![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
This work features presentations by international experts on mine environment and ventilation. Topics covered include analysis and design of ventilation systems, coal bed methane and gas modelling, dust generation and control, and heat flow, fan and face ventilation.
This book provides a comprehensive introduction to scale management. Starting with an introduction to oilfield scale, including material on predicting the problem and evaluating treatment options, it then discusses various management and inhibition techniques before presenting squeeze treatments. In turn, it explores the automatic optimization of squeeze designs, the use of tracers to estimate scale inhibitor placement, and the mathematics of transport and adsorption in squeeze treatments, while also describing the treatment lifecycle in detail. Further, it presents all the steps involved in designing a cost-effective squeeze treatment for a real-world field case. Given its scope, the book will be of interest to researchers in the field of petroleum engineering, especially those specializing in flow assurance, transport in porous media, or the modelling and optimization of scale treatment designs. It also offers a valuable resource for engineers working in the oil industry, and for service companies providing scale management
This book deals with complex fluid characterization of oil and gas reservoirs, emphasizing the importance of PVT parameters for practical application in reservoir simulation and management. It covers modeling of PVT parameters, QA/QC of PVT data from lab studies, EOS modeling, PVT simulation and compositional grading and variation. It describes generation of data for reservoir engineering calculations in view of limited and unreliable data and techniques like downhole fluid analysis and photophysics of reservoir fluids. It discusses behavior of unconventional reservoirs, particularly for difficult resources like shale gas, shale oil, coalbed methane, reservoirs, heavy and extra heavy oils.
Among renewable energy resources, Biodiesel fuel made from rapeseed is of special importance in Europe. Economical, technological, ecological and toxicological arguments have been advanced implying that, at present, Biodiesel is at best just a "niche" product that can only compete with traditional fossil diesel fuel because of significant tax incentives. Given the present state of knowledge in these very different areas, the decisive question to be asked is whether the competitiveness, and thus marketability, of Biodiesel can be enhanced by biotechnological manipulations of the rape plant.
Two general questions stood at the beginning of this PhD-thesis, namely: * What are the mechanisms which lead to the emergence and establishment of new technologies? * How can this process of technological change be influenced politically? In this sense, conceptual and theoretical interests were the early driving forces of the research work. This is also reflected in the considerable attention paid to the nature of technological change and political control. The result is an holistic per spective which builds on inputs from different disciplines and aims at dynamic interpretation. This, however, created a severe methodological problem: How could such a comprehensive perspective be used constructively? To develop this link between theory and forward-looking, policy-oriented analysis, and to devise a methodology which showed explicitly how this approach could be used in a con structive way were in fact the major challenges of this research project. The appli cation to the example of combined heat and power generation, and the comparison of the developments in the UK and in Germany serve the purpose to demonstrate how this approach and methodology can be implemented in practice. These as pects were also of particular interest to the Institute for Prospective Technological Studies (IPTS), one ofthe institutes of the European Commission's Joint Research Centre, where most of the research work reported in this PhD-thesis was carried out.
MARK FINKELSTEIN National Renewable Energy Laboratory BRIAN H. DAVISON Oak Ridge National Laboratory The proceedings of the 19th symposium on Biotechnologyfor Fuels and Chemicals, held in Colorado Springs, Colorado, May 4-8, 1997, had over 200 attendees. This meeting continues to provide a unique forum for the presentation of new applications and recent research advances in the production of fuels and chemicals through biotech nology. The utilization of renewable resources, and in particular cellulosic biomass, has broad implications in today's world of green house gases, global warming, ozone layers, climate change, energy sustainability, and carbon emissions. It also has relevance to the chemical industry's continuing need to both lower current chemi cal production costs and produce novel chemicals. Biotechnology and bioprocessing are now making it possible to convert this bio mass to fuels and chemicals in a commercially attractive fashion. The 19th Symposium captures a wide range of technical topics from an academic, industrial, or government perspective. A vari ety of biomass feedstocks are discussed in Session 1, along with several updated and innovative pretreatment processing approaches. The ability to turn lignocellulosic materials into simple sugars offers great opportunities to generate cost-effective feed stocks to be used in biotechnological processes for the production of fuels and chemicals. Through the advent of genetic engineering, the development of a series of exciting new biocatalysts and microbes were presented in Session 2."
Exploration seismology uses seismic imaging to form detailed images of the Earth's interior, enabling the location of likely petroleum targets. Due to the size of seismic datasets, sophisticated numerical algorithms are required. This book provides a technical guide to the essential algorithms and computational aspects of data processing, covering the theory and methods of seismic imaging. The first part introduces an extensive online library of MATLAB (R) seismic data processing codes maintained by the CREWES project at the University of Calgary. Later chapters then focus on digital signal theory and relevant aspects of wave propagation and seismic modelling, followed by deconvolution and seismic migration methods. Presenting a rigorous explanation of how to construct seismic images, it provides readers with practical tools and codes to pursue research projects and analyses. It is ideal for advanced students and researchers in applied geophysics, and for practicing exploration geoscientists in the oil and gas industry.
Trade magazines and review articles describe MWD in casual terms, e.g., positive versus negative pulsers, continuous wave systems, drilling channel noise and attenuation, in very simple terms absent of technical rigor. However, few truly scientific discussions are available on existing methods, let alone the advances necessary for high-data-rate telemetry. Without a strong foundation building on solid acoustic principles, rigorous mathematics, and of course, fast, inexpensive and efficient testing of mechanical designs, low data rates will impose unacceptable quality issues to real-time formation evaluation for years to come. This all-new revised second edition of an instant classic promises to change all of this. The lead author and M.I.T.-educated scientist, Wilson Chin, has written the only book available that develops mud pulse telemetry from first principles, adapting sound acoustic principles to rigorous signal processing and efficient wind tunnel testing. In fact, the methods and telemetry principles developed in the book were recently adopted by one of the world's largest industrial corporations in its mission to redefine the face of MWD. The entire engineering history for continuous wave telemetry is covered: anecdotal stories and their fallacies, original hardware problems and their solutions, different noise mechanisms and their signal processing solutions, apparent paradoxes encountered in field tests and simple explanations to complicated questions, and so on, are discussed in complete "tell all" detail for students, research professors and professional engineers alike. These include signal processing algorithms, signal enhancement methods, and highly efficient "short" and "long wind tunnel" test methods, whose results can be dynamically re-scaled to real muds flowing at any speed. A must read for all petroleum engineering professionals!
Good engineers never stop looking for opportunities to improve the performance of their production systems. Performance enhancement methods are always carefully examined, and production data is analyzed in order to identify determining factors affecting performance. The two main activities of the production engineer in the petroleum and related industries are reservoir stimulation and artificial lift. The classic solution to maximizing a well's productivity is to stimulate it. The basis for selecting stimulation candidates should be a review of the well's actual and theoretical IPR. Low permeability wells often need fracturing on initial completion. In low permeability zones, additional post stimulation production can be significant to the economics, however, the production engineer needs to make management aware of the true long term potential or else overly optimistic projections can easily be made. The main purpose of stimulation is to enhance the property value by the faster delivery of the petroleum fluid and/or to increase ultimate economic recovery. The aim of reservoir stimulation is to bypass near-wellbore damage and return a well to its "natural" productivity / injectivity, to extend a conductive path deep into a formation and thus increase productivity beyond the natural level and to produce hydrocarbon from tight formation. The importance of reservoir stimulation is increasing due to following reasons: * Hydrocarbon fields in their mid-life * Production in these fields are in declining trend * The thrust area: Enhancement of production Hence, to improve productivity of the well matrix stimulation and hydraulic fracturing are intended to remedy, or even improve, the natural connection of the wellbore with the reservoir, which could delay the need for artificial lift. This book presents procedures taken in the Oil & Gas Industry for identifying well problems, and it suggests means of solving problems with the help of the Coil Tube unit which is used for improving well productivity and techniques like Acidizing and Hydraulic Fracturing.
Heavy crude oils and bitumen represent more than 50% of all hydrocarbons available on the planet. These feedstocks have a low amount of distillable material and high level of contaminants that make their production, transportation, and refining difficult and costly by conventional technologies. Subsurface Upgrading of Heavy Crude Oils and Bitumen is of interest to the petroleum industry mainly because of the advantages compared to aboveground counterparts. The author presents an in-depth account and a critical review of the progress of industry and academia in underground or In-Situ upgrading of heavy, extra-heavy oils and bitumen, as reported in the patent and open literature. This work is aimed to be a standalone monograph, so three chapters are dedicated to the composition of petroleum and fundamentals of crude oil production and refining. Key Features: Offers a multidisciplinary scope that will appeal to chemists, geologists, biologists, chemical engineers, and petroleum engineers Presents the advantages and disadvantages of the technologies considered Discusses economic and environmental considerations for all the routes evaluated and offers perspectives from experts in the field working with highlighted technologies
Leverage Big Data analytics methodologies to add value to geophysical and petrophysical exploration data Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models demonstrates a new approach to geophysics and petrophysics data analysis using the latest methods drawn from Big Data. Written by two geophysicists with a combined 30 years in the industry, this book shows you how to leverage continually maturing computational intelligence to gain deeper insight from specific exploration data. Case studies illustrate the value propositions of this alternative analytical workflow, and in-depth discussion addresses the many Big Data issues in geophysics and petrophysics. From data collection and context through real-world everyday applications, this book provides an essential resource for anyone involved in oil and gas exploration. Recent and continual advances in machine learning are driving a rapid increase in empirical modeling capabilities. This book shows you how these new tools and methodologies can enhance geophysical and petrophysical data analysis, increasing the value of your exploration data. * Apply data-driven modeling concepts in a geophysical and petrophysical context * Learn how to get more information out of models and simulations * Add value to everyday tasks with the appropriate Big Data application * Adjust methodology to suit diverse geophysical and petrophysical contexts Data-driven modeling focuses on analyzing the total data within a system, with the goal of uncovering connections between input and output without definitive knowledge of the system's physical behavior. This multi-faceted approach pushes the boundaries of conventional modeling, and brings diverse fields of study together to apply new information and technology in new and more valuable ways. Enhance Oil & Gas Exploration with Data-Driven Geophysical and Petrophysical Models takes you beyond traditional deterministic interpretation to the future of exploration data analysis.
Traditional well logging methods, such as resistivity, acoustic, nuclear and NMR, provide indirect information related to fluid and formation properties. The "formation tester," offered in wireline and MWD/LWD operations, is different. It collects actual downhole fluid samples for surface analysis, and through pressure transient analysis, provides direct measurements for pore pressure, mobility, permeability and anisotropy. These are vital to real-time drilling safety, geosteering, hydraulic fracturing and economic analysis. Methods for formation testing analysis, while commercially important and accounting for a substantial part of service company profits, however, are shrouded in secrecy. Unfortunately, many are poorly constructed, and because details are not available, industry researchers are not able to improve upon them. This new book explains conventional models and develops new powerful algorithms for "double-drawdown" and "advanced phase delay" early-time analysis - importantly, it is now possible to predict both horizontal and vertical permeabilities, plus pore pressure, within seconds of well logging in very low mobility reservoirs. Other subjects including inertial Forchheimer effects in contamination modeling and time-dependent flowline volumes are also developed. All of the methods are explained in complete detail. Equations are offered for users to incorporate in their own models, but convenient, easy-to-use software is available for those needing immediate answers. The leading author is a well known petrophysicist, with hands-on experience at Schlumberger, Halliburton, BP Exploration and other companies. His work is used commercially at major oil service companies, and important extensions to his formation testing models have been supported by prestigious grants from the United States Department of Energy. His new collaboration with China National Offshore Oil Corporation marks an important turning point, where advanced simulation models and hardware are evolving side-by-side to define a new generation of formation testing logging instruments. The present book provides more than formulations and solutions: it offers a close look at formation tester development "behind the scenes," as the China National Offshore Oil Corporation opens up its research, engineering and manufacturing facilities through a collection of interesting photographs to show how formation testing tools are developed from start to finish.
Is there a low-carbon future for the oil industry? Faced with compelling new geological evidence, the petroleum industry can no longer ignore the consequences of climate change brought on by consumption of its products. Yet the global community will continue to burn fossil fuels as we manage the transition to a low-carbon economy. As a geologist, oil man, academic and erstwhile politician, Bryan Lovell is uniquely well placed to describe the tensions accompanying the gradual greening of the petroleum industry over the last decade. He describes how, given the right lead from government, the oil industry could be environmental saviors, not villains, playing a crucial role in stabilizing emissions through the capture and underground storage of carbon dioxide. Challenging prejudices of both the environmentalists and the oil industry, Lovell ultimately assigns responsibility to us as consumers and our elected governments, highlighting the need for decisive leadership and urgent action to establish an international framework of policy and regulation. Bryan Lovell comments in a US News & World Report article on Exxon's potential to 'go green' - click here Video from a performance of a folk song inspired by the book, written and performed by Mike Excell at the Woodman Pub, Ware, UK. (Recording courtesy of Tony Dawes.)
Microorganisms can be both beneficial and harmful to the oil and gas industry and therefore there is an increasing need for the oil industry to characterize, quantify and monitor microbial communities in real time. Oilfield Microbiology offers a fundamental insight into how molecular microbiological methods have enabled researchers in the field to analyze and quantify in situ microbial communities and their activities in response to changing environmental conditions. Such information is fundamental to the oil industry to employ more directed, cost-effective strategies to prevent the major problems associated with deleterious microbial activities (e.g., souring and biocorrosion), as well as to encourage beneficial microbe activity (e.g. oil bioremediation). The aim of the book is to understand how the technological advances in molecular microbiological methods over the last two decades are now being utilized by the oil industry to address the key issues faced by the sector. This book contains a comprehensive collection of chapters written by invited experts in the field from academia and industry and provides a solid foundation of the importance of microbes to the oil and gas industry. It is aimed at microbial ecologists, molecular biologists, operators, engineers, chemists, and academics involved in the sector.
This book shares the technical knowhow in the field of health, safety and environmental management, as applied to oil and gas industries and explains concepts through a simple and straightforward approach Provides an overview of health, safety and environmental (HSE) management as applied to offshore and petroleum engineering Covers the fundamentals of HSE and demonstrates its practical application Includes industry case studies and examples based on the author's experiences in both academia and oil and gas industries Presents recent research results Includes tutorials and exercises
This two volume set reviews the fundamentals, performance, and in
situ characterization of PEMFCs and DMFCs. Volume 1 covers the
fundamental science and engineering of these low temperature fuel
cells, focusing on understanding and improving performance and
operation. Part one reviews systems fundamentals, ranging from
fuels and fuel processing, to the development of membrane and
catalyst materials and technology, and gas diffusion media and
flowfields, as well as life cycle aspects and modelling approaches.
Part two details performance issues relevant to fuel cell operation
and durability, such as catalyst ageing, materials degradation and
durability testing, and goes on to review advanced transport
simulation approaches, degradation modelling and experimental
monitoring techniques.
The need for this book has arisen from demand for a current text from our students in Petroleum Engineering at Imperial College and from post-experience Short Course students. It is, however, hoped that the material will also be of more general use to practising petroleum engineers and those wishing for aa introduction into the specialist literature. The book is arranged to provide both background and overview into many facets of petroleum engineering, particularly as practised in the offshore environments of North West Europe. The material is largely based on the authors' experience as teachers and consultants and is supplemented by worked problems where they are believed to enhance understanding. The authors would like to express their sincere thanks and appreciation to all the people who have helped in the preparation of this book by technical comment and discussion and by giving permission to reproduce material. In particular we would like to thank our present colleagues and students at Imperial College and at ERC Energy Resource Consultants Ltd. for their stimulating company, Jill and Janel for typing seemingly endless manuscripts; Dan Smith at Graham and Trotman Ltd. for his perseverence and optimism; and Lesley and Joan for believing that one day things would return to normality. John S. Archer and Colin G. Wall 1986 ix Foreword Petroleum engineering has developed as an area of study only over the present century. It now provides the technical basis for the exploitation of petroleum fluids in subsurface sedimentary rock reservoirs.
This monograph was prepared for the Agency for International Development, Washington D. C. 20523. The authors gratefully acknowledge the assistance ofthe following Research Assistants in the Department of Agricultural Engineering: G. Lamorey, E. A. Osman and K. Sachs. J. L. Bumgarner, Draftsman for the Department, did most ofthe ink drawings. The writing of the monograph provided an unique opportunity to collect and study a significant part of the English and some German literature on the subject starting about the year 1900. It may be concluded that, despite renewed worldwide efforts in this field, only in significant advances have been made in the design of gas producer-engine systems. Eschborn, February l3, 1984 Albrecht Kaupp Contents Chapter I: Introduction and Summary 1 Chapter II: History of Small Gas Producer Engine Systems 8 Chemistry of Gasification 25 Chapter III: Gas Producers 46 Chapter IV: Chapter V: Fuel 100 Chapter VI: Conditioning of Producer Gas 142 Chapter VII: Internal Combustion Engines 226 Chapter VIII: Economics 268 Legend 277 CHAPTER I: INTRODUCTION Gasification of coal and biomass can be considered to be a century old technology."
This book presents the fundamental principles of drilling en gineering, with the primary objective of making a good well using data that can be properly evaluated through geology, reservoir engineering, and management. It is written to assist the geologist, drilling engineer, reservoir engineer, and manager in performing their assignments. The topics are introduced at a level that should give a good basic understanding of the subject and encourage further investigation of specialized interests. Many organizations have separate departments, each per forming certain functions that can be done by several methods. The reentering of old areas, as the industry is doing today, particularly emphasizes the necessity of good holes, logs, casing design, and cement job. Proper planning and coordination can eliminate many mistakes, and I hope the topics discussed in this book will playa small part in the drilling of better wells. This book was developed using notes, comments, and ideas from a course I teach called "Drilling Engineering with Offshore Considerations." Some "rules of thumb" equations are used throughout, which have proven to be helpful when applied in the ix x / Preface proper perspective. The topics are presented in the proper order for carrying through the drilling of a well."
La France, depuis 1973, a fait de grands e./forts pour reduire sa dependance energetique~' tlle en fera plus encore a l'avenir et il n 'est pas hors de portee, dans le long terme, de couvrir la moitie de nos besoins par la production nationale d'energie. Nous ny parviendrons cependant que par de vastes programmes technologiques, des investissements accrus - et il nous faudra encore importer la moitie de notre energie, la quasi totalite du petrole necessaire. L 'economie franfaise, nos entreprises, l'ensemble de leurs personneIs, devront donc plus que jamais " communiquer" avec ceux qui, partout dans le monde, ont les memes ambitions. C'etait devancer l'evenement que de lance" en 1971 un dictionnaire anglais-franfais des termes petroliers,' c'est a nouveau construire l'avenir que de publier cette seconde edition dont le vaste champ, technique, economique, financier, juridique, repond si bien aux besoins de lecteurs qui n 'appartiennent pas a la seule profession petroliere. Qu 'il me soit permis d'en feliciter les auteurs, en soulignant le soin extreme qu 'ils ont mis a donner a chaque terme son exacte equivalence dans notre langue. F. de Wissocq Avant-Propos A l'origine, au cours des annees 50 et 60, Fabio Zubini avait remge un lexique des termes petroliers anglais interessant surtout le raffinage et la chimie du petroie. Le bon accueil reserve a cet ouvrage, en italien d'abord (1969), puis a sa version fran~aise (1971), conduisit finalement a " remettre l'ouvrage sur le metier ".
An ever-increasing dependence on green energy has brought on a renewed interest in polymer electrolyte membrane (PEM) electrolysis as a viable solution for hydrogen production. While alkaline water electrolyzers have been used in the production of hydrogen for many years, there are certain advantages associated with PEM electrolysis and its relevance to renewable energy sources. PEM Electrolysis for Hydrogen Production: Principles and Applications discusses the advantages of PEM electrolyzers over alkaline electrolyzers, presents the recent advances of hydrogen PEM fuel cells accelerating the large-scale commercialization of PEM electrolysis, and considers the challenges that must be addressed before PEM electrolysis can become a commercially feasible option. Written by international scientists in PEM electrolysis and fuel cell research areas, this book addresses the demand for energy storage technologies that store intermittent renewable energy and offers the most complete and up-to-date information on PEM electrolysis technology and research. The authors: Cover the fundamental applications of PEM electrolysis Review the state-of-the-art technologies and challenges related to each of the components of the PEM electrolysis Address failure analysis and review available failure diagnostic tools Provide future direction for researchers and technology developers PEM Electrolysis for Hydrogen Production: Principles and Applications provides a fundamental understanding of the requirements and functionalities of certain components and attributes of the PEM electrolysis technology that are common for both PEM fuel cells' and electrolyzers' hydrogen applications for energy storage. Beneficial to students and professionals, the text serves as a handbook for identifying PEM electrolysis failure modes and diagnosing electrolyzer performance to improve efficiency and durability.
The key focus of the book is on engineering aspects of the subject field Updated, comprehensive text covering offshore drilling, production and field development and offers complete coverage of offshore oil and gas operations. Also, key maintenance issues like pigging, corrosion, subsidence are discussed.
Introduction 1 1. Conventional & Isochronal Tests 5 1. 1 Derivation of Fundamental Flow Equation 6 1. 2 Conventional Test 10 1. 3 Isochronal Test 13 1. 4 Modified Isochronal Test 17 2. Additional Testing Options 23 2. 1 Pseudopressure (Real Gas Potential) Treatment for Gas Flow 24 2. 2 The Radial Diffusivity Equation for Gas Flow 31 2. 3 Analytical Solution of the Diffusivity Equation 33 2. 4 Flow Regimes 34 2. 5 Skin Factor 36 2. 6 Turbulent Flow Factor 40 2. 7 Drawdown or Falloff Test 41 2. 8 Buildup Test 43 2. 9 Determination of S, S' and 0 from Buildup and Drawdown Tests 47 53 3. Additional Testing Considerations 3. 1 Surface-Pressure Relationships 54 Stabilization Time and Radius of Investigation 62 3. 2 Choice of Flow Rates and Duration of Flow Rates 64 3. 3 3. 4 Well bore Storage Effects 65 3. 5 Production of Liquids 66 3. 6 Single-Point Test 68 3. 7 The Orifice Meter 68 3. 8 Testing Equipment 74 76 3. 9 Measurement, Sampling, and Safety in Testing 81 4. Procedures & Regulations 4. 1 Interstate Oil Compact Commission Procedures 83 4. 2 State of Texas Regulations 99 4. 3 State of Oklahoma Regulations 102 4. 4 State of New Mexico Regulations 109 4. 5 State of Louisiana Regulations 123 4. 6 Province of Alberta Regulations 124 vi Gaswell Testing 5. Field Test & Interpretation 127 6.
This book focuses on oilfield performance analysis and development adjustment by integrating geology, applied mathematics, and other relevant theories. Based on the abundant and detailed field test and production data from Daqing and Tarim, two major oilfields in China, the regularities, characteristics, design, and adjustment of waterflooding development of sandstone reservoirs throughout the life cycle are described. Field development theories and practices are organically combined in this book, which, embracing comprehensive, systematic, and pragmatic contents, is conducive to development technicians to quickly grasp the characteristics of waterflooding and prepare adjustment plans. It is also useful as a textbook in petroleum colleges and short training courses. |
![]() ![]() You may like...
Remote Sensing of Atmosphere and Ocean…
Frank S. 'Marzano, Guido Visconti
Hardcover
R5,426
Discovery Miles 54 260
The Massachusetts State Constitution
Lawrence M. Friedman, Lynnea Thody
Hardcover
R6,226
Discovery Miles 62 260
Predicting Flow-Induced Acoustics at…
Roberto Navarro Garcia
Hardcover
R3,026
Discovery Miles 30 260
Graphs and Discrete Dirichlet Spaces
Matthias Keller, Daniel Lenz, …
Hardcover
R4,374
Discovery Miles 43 740
Become A Better Writer - How To Write…
Donald Powers, Greg Rosenberg
Paperback
|