![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
Dieses beliebte Lehrbuch vereint die vier Fachrichtungen der Chemietechnik: Chemie, thermische und mechanische Verfahrenstechnik, chemische Reaktionstechnik und allgemeine Chemietechnik. Die 2. Auflage wurde aktualisiert und spiegelt neue Entwicklungen des Fachgebiets wider.
Radiation-thermal cracking of oil feedstock has the potential to offer a solution to many of the challenges the oil industry is facing. Radiation-induced chain cracking reactions in hydrocarbons at lowered temperatures initiated the development of improved technological approaches, combining the advantages of radiation-thermal cracking and low-temperature feedstock processing. However, researchers still face obstacles in the practical application of theory and experimental data, and the literature presents contradictions that need to be sorted out for further development of this technology. Petroleum Radiation Processing fills an information gap, providing systematic descriptions of the fundamentals of radiation-induced cracking reactions in hydrocarbons. It analyzes the basic experiments that have brought about the rapid development of radiation technology for petroleum radiation processing during the last decades. The book provides a detailed introduction to radiation methods based on radiation-thermal and low-temperature cracking of hydrocarbons, emphasizing high-viscous oil feedstocks that are difficult to process by conventional methods-such as heavy and high-paraffinic crude oil, fuel oil, and bitumen. It helps readers understand the mechanisms and kinetics of low-temperature radiation cracking. The book addresses the application of promising radiation methods for solving critical environmental issues, such as oil desulfurization and regeneration of used lubricants and other used oil products. Examining experimental data as well as theoretical and technical approaches, it summarizes research progress in the field of petroleum radiation processing, providing a useful reference on the theory and technology of hydrocarbon radiation processing for chemical technologists, researchers, and students.
Advanced Biomass Gasification: New Concepts for Efficiency Increase and Product Flexibility provides a thorough overview on new concepts in biomass gasification and consolidated information on advances for process integration and combination, which could otherwise only be gained by reading a high number of journal publications. Heidenreich, Muller and Foscolo, highly respected experts in this field, start their exploration with the compact UNIQUE reactor, gasification and pyrolysis, gasification and combustion, and catalysts and membranes. The authors then examine biomass pre-treatment processes, taking into account the energy balance of the overall conversion process, and look into oxygen-steam gasification and solutions for air separation, including new options for integration of O2-membranes into the gasifier. Several polygeneration strategies are covered, including combined heat and power (CHP) production with synthetic natural gas (SNG), biofuels and hydrogen, and new cutting-edge concepts, such as plasma gasification, supercritical water gasification, and catalytic gasification, which allows for insights on the future technological outlook of the area. This book is then a valuable resource for industry and academia-based researchers, as well as graduate students in the energy and chemical sectors with interest in biomass gasification, especially in areas of power engineering, bioenergy, chemical engineering, and catalysis.
Simultaneous Multi-Pollutants Removal in Flue Gas by Ozone mainly introduces the multi-pollution control technology in flue gas by ozone oxidation. Based on the authors' recent research works, the book will provide readers with the updated fundamental research findings, comprised of the detail kinetic mechanisms between ozone and gas components in flue gas integrated with experimental and kinetic modeling work. The demonstration case of the multi-pollutant removal technology by ozone is also presented. The book is suitable for the researchers working in the areas of energy and environmental protection, and pollutant control technology. Zhihua Wang is a Professor at the State Key Laboratory of Clean Energy Utilization of Zhejiang University; Kefa Cen is the Academician of Chinese Academy of Engineering, and the director of Institute for Thermal Power Engineering of Zhejiang University; Junhu Zhou is a Qiushi Scholar Professor at the State Key Laboratory of Clean Energy Utilization of Zhejiang University; Jianren Fan is the Cheung Kong Scholar Professor at the State Key Laboratory of Clean Energy Utilization of Zhejiang University.
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.
Energy and Fuel Systems Integration explains how growing energy and fuel demands, paired with the need for environmental preservation, require different sources of energy and fuel to cooperate and integrate with each other rather than simply compete. Providing numerous examples of energy and fuel systems integration success stories, this book: Discusses the use of different mixtures of fuels for combustion, gasification, liquefaction, pyrolysis, and anaerobic digestion processes Describes the use of hybrid nuclear and renewable energy systems for power and heat cogenerations with nonelectrical applications Details the holistic integration of renewable, nuclear, and fossil energy systems by gas, heat, and smart electrical grids Energy and Fuel Systems Integration emphasizes the many advantages of these integrated systems, including sustainability, flexibility for optimization and scale-up, and more efficient use of storage, transportation, and delivery infrastructures.
Oil spills are a serious marine disaster. Oil spill accidents usually occur in shipping, ports and offshore oil development. Although most are emergent events, once an oil spill occurs, it will cause great harm to the marine ecological environment, and bring direct harm to the economic development along the affected coast as well as to human health and public safety. Information Engineering of Emergency Treatment for Marine Oil Spill Accidents analyzes the causes of these accidents, introduces China's emergency response system, discusses technologies such as remote sensing and monitoring of oil spill on the sea surface and oil fingerprint identification, studies model prediction of marine oil spill behavior and fate and emergency treatment technologies for oil spills on the sea surface, and emphatically introduces the emergency prediction and warning system for oil spills in the Bohai Sea as well as oil spill-sensitive resources and emergency resource management systems. Features: The status quo and causes of marine oil spill pollution, as well as hazards of oil spill on the sea. The emergency response system for marine oil spills. Model-based prediction methods of marine oil spills. A series of used and developing emergency treatments of oil spill on the sea. This book serves as a reference for scientific investigators who want to understand the key technologies for emergency response to marine oil spill accidents, including the current level and future development trend of China in this field.
Oil and Gas Engineering for Non-Engineers explains in non-technical terms how oil and gas exploration and production are carried out in the upstream oil and gas industry. The aim is to help readers with no prior knowledge of the oil and gas industry obtain a working understanding of the field. Focuses on just the basics of what the layperson needs to know to understand the industry Uses non-technical terms, simple explanations, and illustrations to describe the inner workings of the field Explains how oil is detected underground, how well locations are determined, how drilling is done, and how wells are monitored during production Describes how and why oil and gas are separated from impurities before being sent to customers Aimed at non-engineers working within the oil and gas sector, this book helps readers get comfortable with the workings of this advanced field without the need for an advanced degree in the subject.
Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures summarizes the main causes of corrosion and requirements for materials protection, selection of corrosion-resistant materials and coating materials commonly used for corrosion protection, and the limitations to their use, application, and repair. This book focuses on the protection of steels against corrosion in an aqueous environment, either immersed in seawater or buried. It also includes guidelines for the design of cathodic protection systems and reviews of cathodic protection methods, materials, installation, and monitoring. It is concerned primarily with the external and internal corrosion protection of onshore pipelines and subsea pipelines, but reference is also made to the protection of other equipment, subsea structures, risers, and shore approaches. Two case studies, design examples, and the author's own experiences as a pipeline integrity engineer are featured in this book. Readers will develop a high quality and in-depth understanding of the corrosion protection methods available and apply them to solve corrosion engineering problems. This book is aimed at students, practicing engineers, and scientists as an introduction to corrosion protection for the oil and gas industry, as well as to overcoming corrosion issues.
Production chemistry issues result from changes in well stream fluids, both liquid and gaseous, during processing. Since crude oil production is characterized by variable production rates and unpredictable changes to the nature of the produced fluids, it is essential for production chemists to have a range of chemical additives available for rectifying issues that would not otherwise be fully resolved. Modern production methods, the need to upgrade crude oils of variable quality, and environmental constraints demand chemical solutions. Thus, oilfield production chemicals are necessary to overcome or minimize the effects of the production chemistry problems. Production Chemicals for the Oil and Gas Industry, Second Edition discusses a wide variety of production chemicals used by the oil and gas industry for down-hole and topside applications both onshore and offshore. Incorporating the large amount of research and applications since the first edition, this new edition reviews all past and present classes of production chemicals, providing numerous difficult-to-obtain references, especially SPE papers and patents. Unlike other texts that focus on how products perform in the field, this book focuses on the specific structures of chemicals that are known to deliver the required or desired performance-information that is very useful for research and development. Each updated chapter begins by introducing a problem, such as scale or corrosion, for which there is a production chemical. The author then briefly discusses all chemical and nonchemical methods to treat the problem and provides in-depth descriptions of the structural classes of relevant production chemicals. He also mentions, when available, the environmental properties of chemicals and whether the chemical or technique has been successfully used in the field. This edition includes two new chapters and nearly 50 percent more references.
The author describes the history of industrial safety and the emergence of process safety as an engineering discipline in the 20th century. The book sheds light on the difference between: employers and workers.
Energy and Fuel Systems Integration explains how growing energy and fuel demands, paired with the need for environmental preservation, require different sources of energy and fuel to cooperate and integrate with each other rather than simply compete. Providing numerous examples of energy and fuel systems integration success stories, this book: Discusses the use of different mixtures of fuels for combustion, gasification, liquefaction, pyrolysis, and anaerobic digestion processes Describes the use of hybrid nuclear and renewable energy systems for power and heat cogenerations with nonelectrical applications Details the holistic integration of renewable, nuclear, and fossil energy systems by gas, heat, and smart electrical grids Energy and Fuel Systems Integration emphasizes the many advantages of these integrated systems, including sustainability, flexibility for optimization and scale-up, and more efficient use of storage, transportation, and delivery infrastructures.
This textbook is intended for post-graduate students in mechanical and allied engineering disciplines. It will also be helpful to scientists and engineers working in the areas of combustion to recapitulate the fundamental and generally applied aspects of combustion. This textbook comprehensively covers the fundamental aspects of combustion. It includes physical descriptions of premixed and non-premixed flames. It provides a detailed analysis of the basic ideas and design characteristics of burners for gaseous, liquid and solid fuels. A chapter on alternative renewable fuels has also been included to bring out the need, characteristics and usage of alternative fuels. Review questions have been provided at the end of each chapter which will help the students to evaluate their understanding of the important concepts covered in that chapter. Several standard text books have been cited in the chapters and are listed towards the end, as suggested reading, to enable the readers to refer them when required. The textbook will be useful for students in mechanical, aerospace and related fields of engineering. It will also be a good resource for professionals and researchers working in the areas of combustion technology.
Dynamic Description Technology of Fractured Vuggy Carbonate Gas Reservoirs delivers a critical reference to reservoir and production engineers on the basic characteristics of fractured vuggy gas reservoirs, combining both static and dynamic data to improve reservoir characterization accuracy and development. Based on the full lifecycle of well testing and advanced production decline analysis, this reference also details how to apply reservoir dynamic evaluation and reserve estimation and performance forecasting. Offering one collective location for the latest research on fractured gas reservoirs, this reference also covers physical models, analysis examples, and processes, 3D numerical well test technology, and deconvolution technology of production decline analysis. Packed with many calculation examples and more than 100 case studies, this book gives engineers a strong tool to further exploit these complex assets.
This book highlights recent advancements in such an important topic, through contribution from experts demonstrating different applications in 'day-to-day' life, both existing and newly emerging biological technologies, and thought provoking approaches from different parts of the world, potential future prospects associated with some frontier development in non-conventional energy sources. It covers different aspects of cellulosic and lignocellulosic biomass; Cellulosics Biorefinery; Algal Biofuels; Biodiesel; Bioethanol; Microbial Fuel Cells; Biofuel cells; and biohydrogen production. This book is a comprehensive and informative compilation for international readers, especially undergraduate, post graduate students and researchers.
As global consumption of fossil fuels such as oil increases, previously abundant sources have become depleted or plagued with obstructions. Asphaltene deposition is one of such obstructions which can significantly decrease the rate of oil production. This book offers concise yet thorough coverage of the complex problem of asphaltene precipitation and deposition in oil production. It covers fundamentals of chemistry, stabilization theories and mechanistic approaches of asphaltene behavior at high temperature and pressure. Asphaltene Deposition: Fundamentals, Prediction, Prevention, and Remediation explains techniques for experimental determination of asphaltene precipitation and deposition and different modeling tools available to forecast the occurrence and magnitude of asphaltene deposition in a given oil field. It discusses strategies for mitigation of asphaltene deposition using chemical inhibition and corresponding challenges, best practices for asphaltene remediation, current research, and case studies.
The precipitation and deposition of solids are a major challenge in the production of oil and gas. Flow assurance solids are formed because of unavoidable changes in temperature, pressure and composition of the oil-gas-water flowstream, from reservoir conditions to processing conditions. The advent of subsea production and the increased exploitation of heavy crudes have made flow assurance issues dominant in ensuring efficient and safe exploitation of hydrocarbon assets. Five troublesome flow assurance solids are described in the book: asphaltene, paraffin wax, natural gas hydrate, naphthenate and inorganic scale. These big-five solids are presented in stand-alone chapters. Each chapter is designed to be readable without clutter. Derivations of equations and descriptions of supporting details are given in several appendices. The book is intended for professional engineers and natural scientist working in E&P companies, engineering companies, service companies and specialized companies. An understanding of the big-five solids is required throughout the lifetime of oil and gas assets, from early development to abandonment. The technical, safety and environmental risks associated with deposition problems in near-wellbore formations, production tubing, wellhead equipment, flowlines and processing facilities, are relevant for decisions in the oil and gas industry and in outside regulatory and financial entities.
Handbook of Refinery Desulfurization describes the operation of the various desulfurization process units in a petroleum refinery. It also explains the processes that produce raw materials for the petrochemical industry. It illustrates all the possible processes to lower the sulfur contents in petroleum and its fractions to decrease emissions of sulfur oxides. This book introduces you to desulfurization concepts, including biodesulfurization, as well as technology, giving guidance on how to accomplish desulfurization in various refining processes. It contains background chapters on the composition and evaluation of feedstocks and includes diagrams and tables of feedstocks and their respective produce. It also outlines how to decide which method should be employed to remove sulfur from different feedstocks. A practical and thorough discussion of the field, Handbook of Refinery Desulfurization gives you a strong grasp of the various processes involved with industrial desulfurization while giving you pointers on which procedures to use under certain conditions.
Deals with principles and practices in hydrocarbon industry in general and petroleum refinery in particular Focuses on elucidating the principals involved in operation and practices of the major process units aimed at professional engineer Covers acid gas treatment in view of increased emphasis on carbon capture and storage Elucidates methodologies for safety relief load computation for distillation columns Explains real life problems in boiler, corrosion in crude and vacuum distillation units along with case studies
This title includes a number of Open Access chapters. As the world's energy hunger grows ever larger, fossil fuel reserves are diminishing-and concerns about climate change remind us that our love affair with fossil fuels cannot continue much longer. This has inspired intense research into sustainable energy sources. Biofuels seemed initially promising, but the world soon realized that food-based biofuel has its own dangers. Second-generation biofuels, however, use biomass from crops' inedible parts-such as the stalks and leaves of sugarcane-offering a far more practical, sustainable, and commercially viable solution. In this book, researchers from around the world review some of the most important and timely topics related to using sugarcane feedstock for biofuel. After a basic overview, topics such as these are included: Pretreatment methods The use of various microbial technologies, including bacteria and yeast, to enhance biofuel production Environmental impacts Economic feasibility The viability of electricity being produced side by side with biofuel Essential reading for graduate students and research scientists investigating second-generation biofuels, this book is also recommended for environmentalists, environmental engineers, and microbiologists.
This title includes a number of Open Access chapters. The practice of converting corn to ethanol is controversial, with debates currently being raged in both public policy and science. While biofuels from corn have important implications in alleviating some of the global energy crisis, critics argue that it takes away from vital agricultural products needed to feed the world's growing population. The current volume maintains there is a third way, a method of producing biofuel that only uses biomass that is left behind after all agricultural and nutritional products have been harvested from corn. This biomass is referred to as corn stover. The book serves as an important introduction to this method of producing biofuels from agricultural waste. Edited by a professor from the State University of New York, Geneseo, this reference is important not only for research scientists, but for students and public policy makers who wish to learn more about this alternative method of producing ethanol from corn. The sections found in Fuel Production from Non-Food Biomass: Corn Stover describe the following topics: An overview of why corn stover is a good alternative use of power The technology that makes this process possible on various scales Considerations for policy formation, including economic, land-use, and environmental arguments for and against using corn stover as a biofuel Although controversy still exists about the use of corn stover-with some critics saying that it will cause food shortages, particularly for developing nations-the research in this book focuses on using corn's already existing, non-food biomass and argues that food and biofuel could potentially be produced from the same fields.
High temperature, high oil pressure, oil and gas well completion testing have always been a technical challenge and basic theoretical research is one of the key factors needed to ensure a successful completion test. The completion test basic theory includes: a stress analysis of the completion string, completion string buckling behavior, and temperature and pressure distribution prediction. The completion string is the main bearing and power transmission component for oil and gas well operations and production, and it is required to take on a combination of loads, which result in completion string deformation. Because of these complex relationships, completion string stress analysis has become increasingly more complicated. This book discusses the characters of tubular strings in HTHP (High Temperature - High Pressure) oil and gas wells. These characters include the mechanical behavior of tubular strings and the temperature and pressure variation of tubular strings in different conditions. Mathematical models are established for different conditions and solution existence and uniqueness of some models is discussed, providing algorithms corresponding to the different models. Numerical experiments are presented to verify the validity of models and the feasibility of algorithms, and the impact of the parameters of models for oil and gas wells is also discussed. This book is written for production and testing engineers to provide them with the tools to deal more effectively with the numerical decisions they have to take and for researchers and technicians in petroleum and gas testing and production engineering. Finally, it is also intended to serve as a reference book for mathematicians, college teachers and students.
Anaerobic Digestion (AD) is used around the world to produce low CO2 energy and to make clean fertilisers with large, medium and small-scale plants common-place in Western Europe and USA. There is over 100 million tonnes of agricultural and food waste produced each year in the UK, most of which is just that, waste. Anaerobic digestion, biogas and the heat and electricity that can be produced from it is still a nascent industry within the UK, yet a typical AD plant will recover its capital cost in the first 5 to 7 years. The benefits of AD spread throughout the community:
Although the process of AD is relatively simple there are several system options available to meet the demands of different feedstocks. This book describes, in simple, easy to read language the 5 common systems of AD; how they work, the impact of scale, the basic requirements, their costs and financial implications, and how to get involved in this promising green industry. "
Winner of the 2019 Pulitzer Prize for General Nonfiction 'At heart a David and Goliath story fit for the movies ... [A] valuable, discomforting book' The New York Times Book Review Seven years in the making, Amity and Prosperity tells the story of the energy boom's impact on a small town at the edge of Appalachia and of one woman's transformation from a struggling single parent to an unlikely activist. Stacey Haney is a local nurse working hard to raise two kids and keep up her small farm when the fracking boom comes to her hometown of Amity, Pennsylvania. Intrigued by reports of lucrative natural gas leases in her neighbours' mailboxes, she strikes a deal with a Texas-based energy company. Soon trucks begin rumbling past her small farm, a fenced-off drill site rises on an adjacent hilltop, and domestic animals and pets start to die. When mysterious sicknesses begin to afflict her children, she appeals to the company for help. Its representatives insist that nothing is wrong. Alarmed by her children's illnesses, Haney joins with neighbours and a committed husband-and-wife legal team to investigate what's really in the water and air. Against local opposition, Haney and her allies doggedly pursue their case in court and begin to expose the damage that's being done to the land her family has lived on for centuries. Drawing on seven years of immersive reporting, prizewinning poet and journalist Eliza Griswold reveals what happens when an imperilled town faces a crisis of values, and a family wagers everything on an improbable quest for justice.
Constantly in the news and the subject of much public debate, fracking, as it is known for short, is one of the most promising yet controversial methods of extracting natural gas and oil. Today, 90 percent of natural gas wells use fracking. Though highly effective, the process-which fractures rock with pressurized fluid-has been criticized for polluting land, air, and water, and endangering human health. A timely addition to Oxford's What Everyone Needs to Know series, Hydrofracking tackles this contentious topic, exploring both sides of the debate and providing a clear guide to the science underlying the technique. In concise question-and-answer format, Alex Prud'homme cuts through the maze of opinions and rhetoric to uncover key points, from the economic and political benefits of fracking to the health dangers and negative effects on the environment. Prud'homme offers clear answers to a range of fundamental questions, including: What is fracking fluid? How does it impact water supplies? Who regulates the industry? How much recoverable natural gas exists in the U.S.? What new innovations are on the horizon? Supporters as diverse as President Obama and the conservative billionaire T. Boone Pickens have promoted natural gas as a clean, "21st-century" fuel that will reduce global warming, create jobs, and provide tax revenues, but concerns remain, with environmental activists like Bill McKibben and others leading protests to put an end to fracking as a means of obtaining alternative energy. Prud'homme considers ways to improve methods in the short-term, while also exploring the possibility of transitioning to more sustainable resources-wind, solar, tidal, and perhaps nuclear power-for the long term. Written for general readers, Hydrofracking clearly explains both the complex science of fracking and the equally complex political and economic issues that surround it, giving readers all the information they need to understand what will no doubt remain a contentious issue for years to come. |
You may like...
Crises in Oil, Gas and Petrochemical…
Mohammad Reza Rahimpour, Babak Omidvar, …
Paperback
R4,566
Discovery Miles 45 660
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,056
Discovery Miles 20 560
Risk Assessment and Management for Ships…
Yong Bai, Jeom Kee Paik
Paperback
R5,740
Discovery Miles 57 400
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Thermal Methods
Abdolhossein Hemmati Sarapardeh, Alireza Alamatsaz, …
Paperback
R3,946
Discovery Miles 39 460
|