Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
Enhanced-Oil Recovery (EOR) evaluations focused on asset
acquisition or rejuvenation involve a combination of complex
decisions, using different data sources. EOR projects have been
traditionally associated with high CAPEX and OPEX, as well as high
financial risk, which tend to limit the number of EOR projects
launched. In this book, the authors propose workflows for EOR
evaluations that account for different volumes and quality of
information. This flexible workflow has been successfully applied
to oil property evaluations and EOR feasibility studies in many oil
reservoirs. The methodology associated with the workflow relies on
traditional (look-up tables, XY correlations, etc.) and more
advanced (data mining for analog reservoir search and geology
indicators) screening methods, emphasizing identification of
analogues to support decision making. The screening phase is
combined with analytical or simplified numerical simulations to
estimate full-field performance by using reservoir data-driven
segmentation procedures. Assets evaluated include reservoir types ranging from oil sands to condensate reservoirs. Different stages of development and information availability are discussed
The supply of petroleum continues to dwindle at an alarming rate, yet it is the source of a range of products - from gasoline and diesel to plastic, rubber, and synthetic fiber. Critical to the future of this commodity is that we learn to use it more judiciously and efficiently. Fundamentals of Petroleum and Petrochemical Engineering provides a holistic understanding of petroleum and petrochemical products manufacturing, presented in a step-by-step sequence of the entire supply chain. Filled with crucial information relevant to a range of applications, the book covers topics such as: The essential preliminaries for the exploration and production of crude petroleum oil and gas Analysis of crude oil and its petroleum products The processing of petroleum in refineries The fundamentals of lubricating oil and grease Petrochemicals - their raw materials and end products, and manufacturing principles of industrially important products Theories and problems of unit operations and the processes involved in refineries and petrochemical plants Automatic operations in plants Start up, shutdown, maintenance, fire, and safety operations Commercial and managerial activities necessary for the ultimate success of a refining or manufacturing business Due to the advancement of technology, new petrochemicals are being invented and will continue to be relevant to the petroleum industry in the near future. Those entering the industry need a firm grasp of the basics as the field continues to open up new avenues of possibility, while at the same time being cognizant of the challenges that exist through the heightened focus on sustainable energy.
Refiners' efforts to conform to increasingly stringent laws and a preference for fuels derived from renewable sources have mandated changes in fluid cracking catalyst technology. Advances in Fluid Catalytic Cracking: Testing, Characterization, and Environmental Regulations explores recent advances and innovations in this important component of petroleum refining technology and evaluates how the industry has been changed by environmental regulations worldwide. Measurement, testing, and improvement Modern spectroscopic techniques continue to be essential to the understanding of catalyst performance and feedstock properties. The book contains a detailed review of the use of adsorption microcalorimetry to measure acidity, acid site density, and the strength of the strongest acid sites in heterogenous catalysts. It also discusses the use of 1H-NMR to characterize the properties of a FCCU feedstock. In addition, the book dedicates several chapters to pilot plant testing of catalysts and nontraditional feedstocks, maximizing and improving LCO (heating oil) production and quality, and improving FCCU operations. Complying with the EPA The EPA has identified the petroleum refining industry as a targeted enforcement area for the Clean Air Act (CAA) passed in 1970 and the CAA Amendments of 1990. The final chapters of the book examine the evolution of the EPA's attempts to encourage the refining industry to enter into voluntary consent decrees to comply with the CAA and the 1990 amendments. The book describes consent decree negotiations as well as FCC emissions (SOx, NOx, CO, PM) reduction technologies through consent decree implementations. Containing contributions from a panel of worldwide experts, the book demonstrates how the global shift toward environmentalism has engineered significant changes in the petroleum refining industry at a critical level.
Fundamentals of Petroleum Refining presents the fundamentals of thermodynamics and kinetics, and it explains the scientific background essential for understanding refinery operations. The text also provides a detailed introduction to refinery engineering topics, ranging from the basic principles and unit operations to overall refinery economics. The book covers important topics, such as clean fuels, gasification, biofuels, and environmental impact of refining, which are not commonly discussed in most refinery textbooks. Throughout the source, problem sets and examples are given to help the reader practice and apply the fundamental principles of refining. Chapters 1-10 can be used as core materials for teaching undergraduate courses. The first two chapters present an introduction to the petroleum refining industry and then focus on feedstocks and products. Thermophysical properties of crude oils and petroleum fractions, including processes of atmospheric and vacuum distillations, are discussed in Chapters 3 and 4. Conversion processes, product blending, and alkylation are covered in chapters 5-10. The remaining chapters discuss hydrogen production, clean fuel production, refining economics and safety, acid gas treatment and removal, and methods for environmental and effluent treatments. This source can serve both professionals and students (on undergraduate and graduate levels) of Chemical and Petroleum Engineering, Chemistry, and Chemical Technology. Beginners in the engineering field, specifically in the oil and gas industry, may also find this book invaluable.
Based on the classic Standard Handbook of Petroleum and Natural Gas Engineering, Second Edition, the Working Guide to Petroleum and Natural Gas Production Engineering begins with an extensive overview of the basic principles, definitions, and data. Later chapters cover properties of hydrocarbon mixtures, flow natural flow of fluids, natural flow performance, artificial lift methods and corrosion and scaling. This book provides engineers with a bases for understanding important concepts such a flow phenomena, hydrate formation, pressure (surge) waves, or high viscosity liquid flow failure. The focus of book is to assist the reader to understand and avoid potential operational challenges and design effective solutions and operational responses. Evaluate well inflow performance
Reservoir Rock Properties and Fluid Flow covers properties of
natural rocks and fluids that are important in Petroleum and
Natural Gas Engineering. In this book major emphasis is placed on
fluid storage in reservoir rocks and in flow of fluids through the
rock's pore structure. These phenomena dominate calculations that
are common in the areas of reservoir and production engineering.
This book is designed for technical professionals and introduces
readers to the fundamental as well as the advanced aspects of
reservoir engineering. Theoretical concepts coupled with numerous
practical case histories are presented to assist reservoir and
exploitation engineers in their primary functions-the determination
of oil and gas reserves and the maximization of hydrocarbon
recovery under primary, secondary, and tertiary schemes. Critical properties of reservoir rocks Fluid (oil, water, and gas) PVT relationships Methods to calculate hydrocarbons initially in place Dynamic techniques to assess reservoir performance Parameters that impact well/reservoir performance over time
Working Guide to Vapor-Liquid Phase Equilibria Calculations offers a practical guide for calculations of vapor-phase equilibria. The book begins by introducing basic concepts such as vapor pressure, vapor pressure charts, equilibrium ratios, and flash calculations. It then presents methods for predicting the equilibrium ratios of hydrocarbon mixtures: Wilson's correlation, Standing's correlation, convergence pressure method, and Whitson and Torp correlation. The book describes techniques to determine equilibrium ratios of the plus fraction, including Campbell's method, Winn's method, and Katz's method. The remaining chapters cover the solution of phase equilibrium problems in reservoir and process engineering; developments in the field of empirical cubic equations of state (EOS) and their applications in petroleum engineering; and the splitting of the plus fraction for EOS calculations.
A comprehensive review of the current status and challenges for natural gas and shale gas production, treatment and monetization technologies Natural Gas Processing from Midstream to Downstream presents an international perspective on the production and monetization of shale gas and natural gas. The authors review techno-economic assessments of the midstream and downstream natural gas processing technologies. Comprehensive in scope, the text offers insight into the current status and the challenges facing the advancement of the midstream natural gas treatments. Treatments covered include gas sweeting processes, sulfur recovery units, gas dehydration and natural gas pipeline transportation. The authors highlight the downstream processes including physical treatment and chemical conversion of both direct and indirect conversion. The book also contains an important overview of natural gas monetization processes and the potential for shale gas to play a role in the future of the energy market, specifically for the production of ultra-clean fuels and value-added chemicals. This vital resource: Provides fundamental chemical engineering aspects of natural gas technologies Covers topics related to upstream, midstream and downstream natural gas treatment and processing Contains well-integrated coverage of several technologies and processes for treatment and production of natural gas Highlights the economic factors and risks facing the monetization technologies Discusses supply chain, environmental and safety issues associated with the emerging shale gas industry Identifies future trends in educational and research opportunities, directions and emerging opportunities in natural gas monetization Includes contributions from leading researchers in academia and industry Written for Industrial scientists, academic researchers and government agencies working on developing and sustaining state-of-the-art technologies in gas and fuels production and processing, Natural Gas Processing from Midstream to Downstream provides a broad overview of the current status and challenges for natural gas production, treatment and monetization technologies.
Geopressure drives fluid flow and is important for hydrocarbon exploration, carbon sequestration, and designing safe and economical wells. This concise guide explores the origins of geopressure and presents a step-by-step approach to characterizing and predicting pressure and least principal stress in the subsurface. The book emphasizes how geology, and particularly the role of flow along permeable layers, drives the development and distribution of subsurface pressure and stress. Case studies, such as the Deepwater Horizon blowout, and laboratory experiments, are used throughout to demonstrate methods and applications. It succinctly discusses the role of elastoplastic behaviour, the full stress tensor, and diagenesis in pore pressure generation, and it presents workflows to predict pressure, stress, and hydrocarbon entrapment. It is an essential guide for academics and professional geoscientists and petroleum engineers interested in predicting pressure and stress, and understanding the role of geopressure in geological processes, well design, hydrocarbon entrapment, and carbon sequestration.
Well test planning is one of the most important phrases in the life
cycle of a well, if done improperly it could cost millions. Now
there is a reference to ensure you get it right the first time.
Written by a Consultant Completions & Well Test Engineer with
decades of experience, Well Test Planning and Operations provides a
road map to guide the reader through the maze of governmental
regulations, industry codes, local standards and practices. This
book describes how to plan a fit-for-purpose and fault free well
test, and to produce the documents required for regulatory
compliance. Given the level of activity in the oil and gas industry
and the shortage of experienced personnel, this book will appeal to
many specialists sitting in drilling, completion or exploration
departments around the world who find themselves in the business of
planning a well test, and yet who may lack expertise in that
specialty. Nardone provides a roadmap to guide the planner through
this complex subject, showing how to write the necessary
documentation and to coordinate the many different tasks and
activities, which constitute well test planning. Taking the reader
from the basis for design through the well Test program to well
test reports and finally to the all-important learning to ensure
continuous improvement.
Natural gas is playing an increasing role in meeting world energy demands because of its abundance, versatility, and its clean burning nature. As a result, lots of new gas exploration, field development and production activities are under way, especially in places where natural gas until recently was labeled as stranded . Because a significant portion of natural gas reserves worldwide are located across bodies of water, gas transportation in the form of LNG or CNG becomes an issue as well. Finally natural gas is viewed in comparison to the recently touted alternatives. Therefore, there is a need to have a book covering all the unique aspects and challenges related to natural gas from the upstream to midstream and downstream. All these new issues have not been addressed in depth in any existing book. To bridge the gap, Xiuli Wang and Michael Economides have written a new book called "Advanced Natural Gas Engineering." This book will serve as a reference for all engineers and professionals in the energy business. It can also be a textbook for students in petroleum and chemical engineering curricula and in training departments for a large group of companies."
Completely revised and updated, the third edition of this bestseller discusses the concept and ongoing development of using methanol as a transportation fuel, energy storage medium, and as a raw material to replace oil. The contents have also been expanded by 15% with new chapters on energy storage, methanol from biomass and waste products, as well as on carbon dioxide recycling. Written by Nobel laureate George Olah, this is an inspiring read for anyone concerned with the major challenge posed by tomorrow?s energy and environmental problems.
As a follow-up to the Handbook of Gasification Technology, also from Wiley-Scrivener, Synthesis Gas goes into more depth on how the products from this important technology can reduce our global carbon footprint and lead the United States, and other countries, toward energy independence. The environmental benefits are very high, and, along with carbon capture and renewable fuels, synthesis gas (or syngas) is a huge step toward environmental sustainability. Synthesis gas is one of the most important advancements that has ever occurred in energy production. Using this technology, for example, coal, biomass, waste products, or a combination of two or more of these can be gasified into a product that has roughly half the carbon footprint of coal alone. Used on a massive scale, just think of the potential for reducing carbon emissions!Synthesis Gas covers all aspects of the technology, from the chemistry, processes, and production, to the products, feedstocks, and even safety in the plant. Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library.
Can "green petroleum" reverse global warming and bring down high gasoline prices? Written in non-technical language for the layperson, this book investigates and details how the oil and gas industry can "go green" with new processes and technologies, thus bringing the world's most important industry closer to environmental and economic sustainability.
The wettability of oil reservoirs is the most important factor controlling the rate of oil recovery, providing a profound effect on petroleum production. The petroleum industry has increased the research effort on wettability, but, so far, there has never been a comprehensive book on the topic. This is the first book to go through all of the major research and applications on wettability, capillary pressure and improved recovery. Critical topics including core preservation, the effect of wettability on relative permeability, surface forces such as van der Waals equation of state, petroleum traps and pore size effects are all included in this musthave handbook. Deciphering the techniques and examples will increase the efficiency and production of oil recovery, translating to stronger reservoir simulations and improved well production.
Liquid loading can reduce production and shorten the life-cycle of
a well costing a company millions in revenue. A handy guide on the
latest techniques, equipment, and chemicals used in de-watering gas
wells, Gas Well Deliquification, 2nd ed. continues to be the
engineer's choice for recognizing and minimizing the effects of
liquid loading. The second edition serves as a guide discussing the
most frequently used methods and tools used to diagnose liquid
loading problems and reduce the detrimental effects of liquid
loading on gas production.
Crises in Oil, Gas and Petrochemical Industries: Loss Prevention and Disaster Management, Volume Two provides an overview of both natural and manmade disasters occurring in oil, gas and petrochemical industries and prepares special solutions based on their types. The book focuses on loss prevention and disaster management in petrochemical industries from different points-of-view. Sections review methods for making the apparatus safer and continue with discussions on the process of facing and managing disasters during the occurrence. Final sections cover loss and economic analysis after disasters and methods of reversibility are presented with case studies from around the world.
The gasification process converts any carbon-containing material
into a synthesis gas composed primarily of carbon monoxide and
hydrogen, which can be used as a fuel to generate electricity or
steam or used as a basic chemical building block for a large number
of uses in the petrochemical and refining industries. Gasification
adds value to low or negative value feedstocks by converting them
to marketable fuels and products.
Oil is the lifeblood of the modern world. Without it, there would be no planes, no plastic, no exotic produce, and a global political landscape few would recognise. Humanity's dependence upon oil looks set to continue for decades to come, but what is it? Fully updated and packed with fascinating facts to fuel dinner party debate, Professor Vaclav Smil's Oil: A Beginner's Guide explains all matters related to the `black stuff', from its discovery in the earth right through to the controversy that surrounds it today.
Pipes are of major importance for transport of liquids and gas mainly for water, natural gas and oil. The total length of gas pipes in the world is estimated at one million kilometres for gas transport (pipes with a diameter of 80 to 1000 mm). Pipelines remain the least expensive transcontinental mean of transport compared to rail-bound or terrestrial transport. It has become increasingly paramount to ensure the safe utilisation of such plant in order to prevent economical, social and ecological losses. From a technical point of view, pipelines are complicated three dimensional structures that include straight pipes, nozzles, pipe-bends, dissimilar welded joints, etc. In addition, their operating conditions can be quite severe, that is, internal pressure and cyclic loading (vibration) combined with the influence of internal and external corrosive environments. The external defects, e.g., corrosion defects, gouge, foreign object scratches, and pipeline erection activities are major failure reasons of gas pipelines. All these types of defects and associated failure are described. Leak and fracture of pipes is assumed to be done by initiation and propagation of defect and final failure when defect has reached a critical length. In this book, the three two major defect assessment tools for pipes are presented: i) the failure assessment diagram and particularly the SINTAP procedure, ii) limit analysis, iii) strain design approach Methods of defect repair are based on investigation findings. Methods such as welded sleeve, repair clamp composite sleeve, grinding, pipe replacement are described.
"Explores Worldwide Trends Involving the Production and Use of Biofuels" With the depletion of oil resources as well as the negative environmental impact of fossil fuels, there is much interest in alternative energy sources. Focusing on some of the most important alternate energy sources for the foreseeable future, the Handbook of Plant-Based Biofuels provides state-of-the-art information on the status of the production of biofuels, in particular, bioethanol and biodiesel. "Introduction to Biofuels" After profiling plant-based biofuels, the book gives an overview of the production of biofuels from biomass materials by thermochemical and biochemical methods. It examines the thermochemical conversion of biomass to liquids and gaseous fuels. "Production of Bioethanol" The handbook then analyzes current biomass-to-ethanol programs, followed by a discussion on ethanol fermentation from molasses and process practices applied for the improvement of ethanol production by ethanologenic microorganisms. It also explains the hydrolysis and fermentation of ethanol from starchy and lignocellulosic biomasses. "Production of Biodiesel" In the final chapters, the contributors discuss current perspectives and the future of biodiesel production. They explore biodiesel production substrates, the lipase-catalyzed preparation of biodiesel, and biodiesel production with supercritical fluid technologies.
As the first and only comprehensive guide for engineers on downhole drilling tools, this is a must-have for the drilling community. "Downhole Drilling Tools" describes all the critical tools for the engineer and covers the practical aspects of downhole equipment. Going beyond the basic bottomhole assembly, this guide includes detailed mechanics and theory on tubulars, fishing, cementing, coiled tubing and various other downhole tools. A must have for both the engineering professional and student alike, this textbook includes worked examples and additional references at the end of each chapter. In its entirety, "Downhole Drilling Tools" enables the reader to recognize drilling benefits and limitations associated with each tool, find solutions to common drilling problems while reducing costs and perform successful well completions.
Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.
Petroleum and natural gas still remain the single biggest resource for energy on earth. Even as alternative and renewable sources are developed, petroleum and natural gas continue to be, by far, the most used and, if engineered properly, the most cost-effective and efficient, source of energy on the planet. Contrary to some beliefs, the industry can, in fact, be sustainable, from an environmental, economic, and resource perspective. Petroleum and natural gas are, after all, natural sources of energy and do not have to be treated as pariahs. This groundbreaking new text describes hydrocarbons in basement formations, how they can be characterized and engineered, and how they can be engineered properly, to best achieve sustainability. Covering the basic theories and the underlying scientific concepts, the authors then go on to explain the best practices and new technologies and processes for utilizing basement formations for the petroleum and natural gas industries. Covering all of the hottest issues in the industry, from oil shale, tar sands, and hydraulic fracturing, this book is a must-have for any engineer working in the industry. This textbook is an excellent resource for petroleum engineering students, reservoir engineers, supervisors & managers, researchers and environmental engineers for planning every aspect of rig operations in the most sustainable, environmentally responsible manner, using the most up-to-date technological advancements in equipment and processes.
Whether it's called "fixed equipment" (at ExxonMobil), "stationary
equipment" (at Shell), or "static equipment" (in Europe), this type
of equipment is the bread and butter of any process plant. Used in
the petrochemical industry, pharmaceutical industry, food
processing industry, paper industry, and the manufacturing process
industries, stationary equipment must be kept operational and
reliable for companies to maintain production and for employees to
be safe from accidents. This series, the most comprehensive of its
kind, uses real-life examples and time-tested rules of thumb to
guide the mechanical engineer through issues of reliability and
fitness-for-service. |
You may like...
Workforce Education at Oil and Gas…
Julie Neal, Brittany Lee Neal
Hardcover
R4,170
Discovery Miles 41 700
Glycerine Production and Transformation…
Marco Frediani, Mattia Bartoli, …
Hardcover
|