![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
The Politics of Energy Research and Development examines and evaluates U.S. research and development policies to promote nuclear, solar, conservation, and other technology options. This volume is the third in the series "Energy Policy Studies, "which explores fundamental, long-term social, political, and economic dimensions of energy technology, resources, and use. Contributions represent a wide range of theoretical and policy perspectives, including sociology, economics, political science, urban and regional studies, environmental analysis, and history and philosophy of technology. Contents: Richard L. Ottinger, "Introduction: The Tragedy of U.S. Energy R&D Policy"; Amor DEGREES B. Lovins, "The Origins of the Nuclear Power Fiasco"; Richard T. Sylves, "Nuclear Exotica: Peaceful Use of Nuclear Explosives"; Eugene Frankel, "Technology, Politics and Ideology: The Vicissitudes of Federal Solar Energy Policy, 1974-1983"; Maxine Savitz, "The Federal Role in Conservation Research and Development"; J. David Roessner, "Commercialization Issues in Energy Technology Policy"; John Byrne and Daniel Rich, "In Search of the Abundant Energy Machine"; and Grant P. Thompson, "Energy Policy in the Interim: Waiting for the Next Shoe to Drop."
As the need to control process emissions has increased, so have the number of FGD treatment and control strategies. The effectiveness of these treatments vary greatly, depending the types and levels of the materials, as well as the size of the facility. Profiles in Flue Gas Desulfurization will help engineers and managers identify the technologies that best fit their plant and/or processes. It's a quick and easy reference to all "tail-end" SO2 control processes currently in commercial use or "on the brink," providing an effective "snapshot" of where this technology stands in industry today. The technologies are divided into waste producing processes, where the end product is a "clean waste," and byproduct processes, where the end product has market value. Each technology profile includes a schematic depicting its major equipment components and arrangement, laid out side-by-side with descriptive text on how the process works, where and how it is currently being utilized, its operational requirements, advantages and limitations for typical applications, and a brief list of principal suppliers.
This textbook presents students with a systematic approach for the quantification and management of greenhouse gas emissions (GHG) and provides best practices for optimal carbon management and quantification. The book begins with an overview of climate change basics and goes on to discuss carbon footprint measurements, carbon management concepts, and concludes by presenting carbon reduction solutions with applications for green buildings, smart transportation, waste management, and carbon trading and offsetting. The author provides practical examples and carbon management models that support innovative reduction solutions and presents a roadmap for the implementation and development of carbon management strategies, making it a useful resource for both upper undergraduate and graduate students as well as practitioners seeking a comprehensive framework to conduct carbon management.
Volume 1 deals with the origins of process gases and describes recovery, properties and composition. It covers as well the shale gas, the production from hydrocarbon rich deep shale formations, being one of the most quickly expanding trends in onshore domestic gas exploration. Vol. 2: Composition and Processing of Gas Streams. Vol. 3: Uses of Gas and Effects.
Pressure vessels are closed containers designed to hold gases or
liquids at a pressure substantially different from the ambient
pressure. They have a variety of applications in industry,
including in oil refineries, nuclear reactors, vehicle airbrake
reservoirs, and more. The pressure differential with such vessels
is dangerous, and due to the risk of accident and fatality around
their use, the design, manufacture, operation and inspection of
pressure vessels is regulated by engineering authorities and guided
by legal codes and standards. "Pressure Vessel Design Manual" is a
solutions-focused guide to the many problems and technical
challenges involved in the design of pressure vessels to match
stringent standards and codes. It brings together otherwise
scattered information and explanations into one easy-to-use
resource to minimize research and take readers from problem to
solution in the most direct manner possible.
The author describes the history of industrial safety and the emergence of process safety as an engineering discipline in the 20th century. The book sheds light on the difference between: employers and workers.
Economic and environmental requirements for advanced power generating systems demand the removal of corrosive and other sulfurous compounds from hot coal gas. After a brief account of the world energy resources and an overview of clean coal technologies, a review of regenerable metal oxide sorbents for cleaning the hot gas is provided. Zinc oxide, copper oxide, calcium oxide, manganese oxide based as well as supported and mixed metal oxide sorbents are treated. Performance analysis of these sorbents, effects of various parameters on the desulfurization efficiency, kinetics of sulfidation and regeneration reactions, sulfiding and regeneration mechanisms are discussed. Two chapters present recent results in the direct production of elemental sulfur from regeneration or SO2-rich gases.
Authors Don Burdick and Bill Leffler have completely rewritten this
time-honored bestseller, now the definitive book for understanding
the mysteries of the petrochemical industry.
This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. * Describes recent advances in chemical enhanced oil recovery. * Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. * Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).
This book introduces the underlying concepts of column dynamics and buckling, based on the latest state-of-the-art research on this innovative topic. It begins with a summary of the basic concepts behind column dynamics and buckling, before moving on to the models for studying dynamic buckling inside oil wells. Four models with increasing complexity are presented: columns without friction; columns with friction; columns inside slant wells; and columns inside offshore wells. Each model is divided into two cases, depending on whether the column is being tripped in or out. A case study is used to demonstrate these models and is further developed as each model is presented and explained. The results include comparisons between the models themselves, thus showing the implications of the adopted hypotheses of each. This book enables academic, industrial, and graduate student readers to fully understand the fundamentals of dynamic buckling and to further develop the presented models for their own research.
Gas Conversion: Methane and Alkane Activation Chemistry: Oxidative Coupling of Methane-A Progress Report (M.M. Bhasin et al.). Methane and Light Alkane (C2C4) Conversion over Metal Fluoride-Metal Oxide Catalyst System in Presence of Oxygen (H.L. Wan et al.). Oxidative Coupling of Methane over Sulfated Sr/La2O3 Catalysts (R. Herman et al.). The Oxidative Coupling of Methane over ZrO2, Doped Li/MgO Catalysts (G.C. Hoogendam et al.). Mechanism and Modeling of Methanerich Oxidation: Effect of Diffusion Limitations of Surface Produced Radicals on the C2 Selectivity in the Oxidative Coupling of Methane (G.B. Marin et al.). Effects of Product Separation on the Kinetics and Selectivity of Oxidative Coupling (R.B. Hall et al.). Reactive vs. Adsorbed Oxygen in Heterogeneous Oxidation of Methane over Li/MgO (A.J. Colussi et al.) Methane to Oxygenates and Chemicals: Selective Photooxidation of Methane to Formaldehyde Using Supported Group VB and VIB Oxide Catalysts (K. Wada et al.). A Study of the Iron/Sodalite Catalyst for the Partial Oxidation of Methane to Methanol (S. Betteridge et al.). Partial Oxidation of Methane to Formaldehyde over Vanadia Catalysts: Reaction Mechanism (B.K. Hodnett). 27 additional articles. Index.
This book provides an overview of the major changes induced by hydrocarbons (HCs) affecting rocks and surface sediments and their implications for non-seismic exploration methods, particularly for marine territories near Cuba. It examines the use of a digital elevation model (DEM) at 90x90m resolution for the detection of subtle, positive geomorphic anomalies related to hydrocarbon microseepage (vertical migration) on possible oil and gas targets. The results support the conclusion that the DEM data provides a low cost and fast offshore oil and gas preliminary exploration strategy. This data is useful serving to focus prospective areas with supplementary unconventional methods such as magnetic-induced polarization (MIP), useful to propose more expensive volumes for detailed 2D-3D seismic surveys.
This book summarizes the authors' extensive experience and interdisciplinary approach to demonstrate how acquiring and integrating data using a variety of analytical equipment can provide better insights into unconventional shale reservoir rocks and their constituent components. It focuses on a wide range of properties of unconventional shale reservoirs, discussing the use of conventional and new analytical methods for detailed measurements of mechanical properties of both organic and inorganic constituent elements as well as of the geochemical characteristics of organic components and their origins. It also addresses the investigation of porosity, pore size and type from several perspectives to help us to define unconventional shale formation. All of these analyses are treated individually, but brought together to present the rock sample on a macro scale. This book is of interest to researchers and graduate students from various disciplines, such as petroleum, civil, and mechanical engineering, as well as from geoscience, geology, geochemistry and geophysics. The methods and approaches can be further extended to biology and medicine.
This book explains the theory, numerical modeling, and applications of a borehole electromagnetic telemetry system used for wireless communication between the downhole tool and the surface control center during oilfield drilling. The authors begin by introducing borehole electromagnetic telemetry and explaining each part of the system with schematics and illustrations. They describe the working principle and compare it with other borehole wireless communication methods, such as mud pulse telemetry. They then address 2D and 3D electromagnetic telemetry modelling, listing previous 2D and 3D modeling methods and detailing the advantages and limitations, before discussing their recent work on a novel layered finite element method for 2D electromagnetic telemetry modelling, and on 3D electromagnetic modelling based on integral equation, thin wire kernel, and layered medium Green's functions. Lastly, the authors show applications of electromagnetic telemetry, including single well borehole wireless communication and cross well communication in pad drilling. This includes photos, figures, and field data from real oilfield jobs. This book is a useful reference for drilling engineers, well logging tool research and development scientists and researchers, as well as for students in the areas of petroleum engineering and electrical engineering.
Windfall is the boldest profile of the world's energy resources since Daniel Yergin's The Quest, asserting that the new energy abundance--due to oil and gas resources once deemed too expensive--is transforming the geo-political order and is boosting American power. "Riveting and comprehensive...a smart, deeply researched primer on the subject." --The New York Times Book ReviewAs a new administration focuses on driving American energy production, O'Sullivan's "refreshing and illuminating" (Foreign Policy) Windfall describes how new energy realities have profoundly affected the world of international relations and security. New technologies led to oversupplied oil markets and an emerging natural gas glut. This did more than drive down prices--it changed the structure of markets and altered the way many countries wield power and influence. America's new energy prowess has global implications. It transforms politics in Russia, Europe, China, and the Middle East. O'Sullivan considers the landscape, offering insights and presenting consequences for each region's domestic stability as energy abundance upends traditional partnerships, creating opportunities for cooperation. The advantages of this new abundance are greater than its downside for the US: it strengthens American hard and soft power. This is "a powerful argument for how America should capitalise on the 'New Energy Abundance'" (The Financial Times) and an explanation of how new energy realities create a strategic environment to America's advantage.
This book addresses several issues related to hydrate inhibition and monoethylene glycol (MEG) recovery units (MRUs) in offshore natural gas fields, from fundamentals to engineering aspects and from energy consumption assessment to advanced topics such as exergy analysis. The assessment of energy degradation in MRUs is critical in offshore rigs, and the topic of exergy theory has by no means been completely explored; it is still being developed. The book presents a comprehensive, yet concise, formulation for exergy flow and examines different approaches for the reference state of MEG and definition of the reference environment so as to obtain an effective exergy analysis with consistent results. It also provides new and useful information that has a great potential in the field of exergy analysis application by assessing energy degradation for three well-known MRU technologies on offshore rigs: the Traditional Atmospheric Distillation Process; the Full-Stream Process; and the Slip-Stream Process. The book then elucidates how the main design parameters impact the efficiency of MEG recovery units and offers insights into thermodynamic efficiency based on case studies of general distillation-based processes with sharp or not too sharp cut, providing ranges for expected values of efficiencies and enhancing a global comprehension of this subject. Since MEG recovery is an energy consuming process that invariably has to be conducted in a limited space and with limited power supply, the book is a valuable resource for those involved in design, engineering, economic evaluation and environmental evaluation of topside processing on offshore platforms for natural gas production.
Growing concerns about the rapid depletion of fossil fuel reserves, rising crude oil prices, energy security and global climate change have led to increased worldwide interest in renewable energy sources such as biofuels. In this context, biofuel production from renewable sources is considered to be one of the most sustainable alternatives to fossil fuels and a viable means of achieving environmental and economic sustainability. Although biofuel processes hold great potential to provide a carbon-neutral route to fuel production, first-generation production systems are characterized by considerable economic and environmental limitations. The advent of second-generation biofuels is intended to produce fuels from lignocellulosic biomass, the woody part of plants that does not compete with food production. However, converting woody biomass into fermentable sugars requires costly technologies. Therefore, third-generation biofuels from microalgae are considered to be a viable alternative energy resource, free from the major drawbacks associated with first and second-generation biofuels. This book examines the background of third-generation biofuel production; the advantages of algae over traditional biofuel crops; algal biomass production; algae harvesting and drying methods; production of biofuel from microalgae; and future prospects.
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
This book addresses the problems involved in the modelling and simulation of shale gas reservoirs, and details recent advances in the field. It discusses various modelling and simulation challenges, such as the complexity of fracture networks, adsorption phenomena, non-Darcy flow, and natural fracture networks, presenting the latest findings in these areas. It also discusses the difficulties of developing shale gas models, and compares analytical modelling and numerical simulations of shale gas reservoirs with those of conventional reservoirs. Offering a comprehensive review of the state-of-the-art in developing shale gas models and simulators in the upstream oil industry, it allows readers to gain a better understanding of these reservoirs and encourages more systematic research on efficient exploitation of shale gas plays. It is a valuable resource for researchers interested in the modelling of unconventional reservoirs and graduate students studying reservoir engineering. It is also of interest to practising reservoir and production engineers.
This book is a product of the initial phase of a broader study evaluating the voluntary and regulatory compliance protocols that are used to account for the contributions of forests in U.S.-based greenhouse gas (GHG) mitigation programs. The research presented here is particularly concerned with these protocols' use of the USDA Forest Service's Forest Inventory and Analysis (FIA) data to describe forest conditions, ownership, and management scenarios, and is oriented towards providing regulators and other interested parties with an objective comparison of the options, uncertainties, and opportunities available to offset GHG emissions through forest management. Chapters focus on the protocols for recognizing forest carbon offsets in the California carbon cap-and-trade program, as described in the Compliance Offset Protocol; U.S. Forest Projects (California Air Resources Board, 2011). Readers will discover the protocols used for quantifying the offset of GHG emissions through forest-related project activity. As such, its scope includes a review of the current methods used in voluntary and compliance forest protocols, an evaluation of the metrics used to assign baselines and determine additionality in the forest offset protocols, an examination of key quantitative and qualitative components and assumptions, and a discussion of opportunities for modifying forest offset protocols, in light of the rapidly changing GHG-related policy and regulatory environment. Finally, the report also discusses accounting and policy issues that create potential barriers to participation in the California cap-and-trade program, and overall programmatic additionality in addressing the needs of a mitigation strategy.
This book provides information on proper underground mine ventilation in order to detail its importance in maintaining safe, productive, healthy and effective underground environments at all times for employees. The text covers correct design, implementation and maintenance of mine ventilation through suitable fan installation, and keeps in mind the economic requirements of undertaking safe procedures and implementations to ensure that ventilation is optimal. Through three main goals, the book addresses the need for proper fan ventilation in the potentially hazardous conditions of an underground mine. The first goal is to summarize and update the technical information on the strategic importance of selecting suitable techno-commercial main mechanical ventilators for a coal mine. The second goal is to provide a user friendly computer program to help any practicing engineers, mine operators, regulators and researchers in choosing the main mechanical ventilators. Factors in this selection process include environmental requirements, regulatory conditions, occupational health related issues, and cost. The third goal is to provide applications for computer programs meant to determine proper selection and implementation of the main mechanical ventilators. The text is geared towards teachers, researchers, policy makers, environmental organizations and mine operators who wish to teach about or implement the best possible ventilation systems for the health and safety of mine workers. |
You may like...
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
Solid Fuel Blending - Principles…
David Tillman, Dao Duong, …
Hardcover
R2,074
Discovery Miles 20 740
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Confined Fluid Phase Behavior and CO2…
Yueliang Liu, Zhenhua Rui
Paperback
R2,767
Discovery Miles 27 670
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,056
Discovery Miles 20 560
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,467
Discovery Miles 54 670
|