![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.
This book addresses the problems involved in the modelling and simulation of shale gas reservoirs, and details recent advances in the field. It discusses various modelling and simulation challenges, such as the complexity of fracture networks, adsorption phenomena, non-Darcy flow, and natural fracture networks, presenting the latest findings in these areas. It also discusses the difficulties of developing shale gas models, and compares analytical modelling and numerical simulations of shale gas reservoirs with those of conventional reservoirs. Offering a comprehensive review of the state-of-the-art in developing shale gas models and simulators in the upstream oil industry, it allows readers to gain a better understanding of these reservoirs and encourages more systematic research on efficient exploitation of shale gas plays. It is a valuable resource for researchers interested in the modelling of unconventional reservoirs and graduate students studying reservoir engineering. It is also of interest to practising reservoir and production engineers.
This book is a product of the initial phase of a broader study evaluating the voluntary and regulatory compliance protocols that are used to account for the contributions of forests in U.S.-based greenhouse gas (GHG) mitigation programs. The research presented here is particularly concerned with these protocols' use of the USDA Forest Service's Forest Inventory and Analysis (FIA) data to describe forest conditions, ownership, and management scenarios, and is oriented towards providing regulators and other interested parties with an objective comparison of the options, uncertainties, and opportunities available to offset GHG emissions through forest management. Chapters focus on the protocols for recognizing forest carbon offsets in the California carbon cap-and-trade program, as described in the Compliance Offset Protocol; U.S. Forest Projects (California Air Resources Board, 2011). Readers will discover the protocols used for quantifying the offset of GHG emissions through forest-related project activity. As such, its scope includes a review of the current methods used in voluntary and compliance forest protocols, an evaluation of the metrics used to assign baselines and determine additionality in the forest offset protocols, an examination of key quantitative and qualitative components and assumptions, and a discussion of opportunities for modifying forest offset protocols, in light of the rapidly changing GHG-related policy and regulatory environment. Finally, the report also discusses accounting and policy issues that create potential barriers to participation in the California cap-and-trade program, and overall programmatic additionality in addressing the needs of a mitigation strategy.
This book provides information on proper underground mine ventilation in order to detail its importance in maintaining safe, productive, healthy and effective underground environments at all times for employees. The text covers correct design, implementation and maintenance of mine ventilation through suitable fan installation, and keeps in mind the economic requirements of undertaking safe procedures and implementations to ensure that ventilation is optimal. Through three main goals, the book addresses the need for proper fan ventilation in the potentially hazardous conditions of an underground mine. The first goal is to summarize and update the technical information on the strategic importance of selecting suitable techno-commercial main mechanical ventilators for a coal mine. The second goal is to provide a user friendly computer program to help any practicing engineers, mine operators, regulators and researchers in choosing the main mechanical ventilators. Factors in this selection process include environmental requirements, regulatory conditions, occupational health related issues, and cost. The third goal is to provide applications for computer programs meant to determine proper selection and implementation of the main mechanical ventilators. The text is geared towards teachers, researchers, policy makers, environmental organizations and mine operators who wish to teach about or implement the best possible ventilation systems for the health and safety of mine workers.
Biohydrogen: For Future Engine Fuel Demands covers the production, purification, storage, pipeline transport, usage, and safety of biohydrogen. Hydrogen promises to be the most significant fuel source of the future, due to its global availability and the fact that water is its only by-product. Biofuels such as bioethanol, biodiesel, bio-oil, and biohydrogen are produced using technologies for thermochemically and biologically converting biomass. Hydrogen fuel production technologies can make use of either non-renewable sources, or renewable sources such as wind, solar, and biorenewable resources. Biohydrogen: For Future Engine Fuel Demands reviews all of the modern biomass-based transportation fuels, including bioethanol, biodiesel, biogas, biohydrogen, and fuel cells. The book also discusses issues of biohydrogen economy, policy and environmental impact. Biohydrogen looks set to be the fuel of choice in the future, replacing both fossil fuels and biorenewable liquid fuels.
The book presents a comprehensive and systematic account of the concept, the current status and the costs of the German energy transition: the Energiewende. Written by an insider who has been working in the German energy industry for over 20 years, it follows a strictly non-political, neutral approach and clearly outlines the most relevant facts and figures. In particular, it describes the main impacts of the Energiewende on the German power system and Germany's national economy. Furthermore, it addresses questions that are of global interest with respect to energy transitions, such as the cost to the national economy, the financial burden on private households and companies and the actual effects on CO2 emissions. The book also discusses what could have been done better in terms of planning and implementing the Energiewende, and identifies important lessons for other countries that are considering a similar energy transition.
Completely revised and updated, the third edition of this bestseller discusses the concept and ongoing development of using methanol as a transportation fuel, energy storage medium, and as a raw material to replace oil. The contents have also been expanded by 15% with new chapters on energy storage, methanol from biomass and waste products, as well as on carbon dioxide recycling. Written by Nobel laureate George Olah, this is an inspiring read for anyone concerned with the major challenge posed by tomorrow?s energy and environmental problems.
This book provides insights into the development and usage of coal in chemical engineering. The reactivity of coal in processes such as pyrolysis, gasification, liquefaction, combustion and swelling is related to its structural properties. Using experimental findings and theoretical analysis, the book comprehensively answers three crucial issues that are fundamental to the optimization of coal chemical conversions: What is the structure of coal? How does the underlying structure determine the reactivity of different types of coal? How does the structure of coal alter during coal conversion? This book will be of interest to both individual readers and institutions involved in teaching and research into chemical engineering and energy conversion technologies. It is aimed at advanced- level undergraduate students. The text is suitable for readers with a basic knowledge of chemistry, such as first-year undergraduate general science students. Higher-level students with an in-depth understanding of the chemistry of coal will also benefit from the book. It will provide a useful reference resource for students and university-level teachers, as well as practicing engineers.
This book incorporates original and review articles on several aspects of petroleum geosciences from Indian terrains, both onshore and offshore, and includes diverse geological (tectonic, sedimentological, organic geochemical, paleontological, stratigraphic, modelling and various others), geophysical methods and policy aspects.
The purpose of this book is to examine the geospatial and temporal linkage between offshore supply vessels and oil and gas activity in the Outer Continental Shelf Gulf of Mexico, and to model OSV activity expected to result from future lease sales. Oil and gas operations occur throughout the world wherever commercial accumulations exist, but no quantitative assessment has ever been performed on the marine vessels that support offshore activity. The OCS Gulf of Mexico is the largest and most prolific offshore oil and gas basin in the world, and a large number of marine vessels are engaged in operations in the region, but tracking their activity is difficult and requires specialized data sources and the development of empirical models. The challenge of modeling arises from the complexity and size of the system, and the particular limitations governing stochastic difficult-to-observe networks. This book bridges the gap with the latest technological perspective and provides insight and computational methods to inform and better understand the offshore sector. Offshore Service Industry and Logistics Modeling in the Gulf of Mexico is presented in three parts. In Part 1, background information on the life cycle stages of offshore development and activity is reviewed, along with a description of the service vessels and port infrastructure in the region. In Part 2, OSV activity in the Gulf of Mexico is baselined using PortVision data to establish spatial and temporal characteristics of vessel activity. In Part 3, the analytic framework used to quantify the connection between OSVs, ports, and offshore activity is described, and activity expected to arise from the 2012-2017 OCS lease program is forecast. Providing an invaluable resource for academics and researchers, this book is also intended for government regulators, energy and environmental analysts, industry professionals, and others interested in this often-overlooked sector.
This book presents several intelligent approaches for tackling and solving challenging practical problems facing those in the petroleum geosciences and petroleum industry. Written by experienced academics, this book offers state-of-the-art working examples and provides the reader with exposure to the latest developments in the field of intelligent methods applied to oil and gas research, exploration and production. It also analyzes the strengths and weaknesses of each method presented using benchmarking, whilst also emphasizing essential parameters such as robustness, accuracy, speed of convergence, computer time, overlearning and the role of normalization. The intelligent approaches presented include artificial neural networks, fuzzy logic, active learning method, genetic algorithms and support vector machines, amongst others. Integration, handling data of immense size and uncertainty, and dealing with risk management are among crucial issues in petroleum geosciences. The problems we have to solve in this domain are becoming too complex to rely on a single discipline for effective solutions and the costs associated with poor predictions (e.g. dry holes) increase. Therefore, there is a need to establish a new approach aimed at proper integration of disciplines (such as petroleum engineering, geology, geophysics and geochemistry), data fusion, risk reduction and uncertainty management. These intelligent techniques can be used for uncertainty analysis, risk assessment, data fusion and mining, data analysis and interpretation, and knowledge discovery, from diverse data such as 3-D seismic, geological data, well logging, and production data. This book is intended for petroleum scientists, data miners, data scientists and professionals and post-graduate students involved in petroleum industry.
This book reports the results of exhaustive research work on modeling and control of vertical oil well drilling systems. It is focused on the analysis of the system-dynamic response and the elimination of the most damaging drill string vibration modes affecting overall perforation performance: stick-slip (torsional vibration) and bit-bounce (axial vibration). The text is organized in three parts. The first part, Modeling, presents lumped- and distributed-parameter models that allow the dynamic behavior of the drill string to be characterized; a comprehensive mathematical model taking into account mechanical and electric components of the overall drilling system is also provided. The distributed nature of the system is accommodated by considering a system of wave equations subject to nonlinear boundary conditions; this model is transformed into a pair of neutral-type time-delay equations which can overcome the complexity involved in the analysis and simulation of the partial differential equation model. The second part, Analysis, is devoted to the study of the response of the system described by the time-delay model; important properties useful for analyzing system stability are investigated and frequency- and time-domain techniques are reviewed. Part III, Control, concerns the design of stabilizing control laws aimed at eliminating undesirable drilling vibrations; diverse control techniques based on infinite--dimensional system representations are designed and evaluated. The control proposals are shown to be effective in suppressing stick-slip and bit-bounce so that a considerable improvement of the overall drilling performance can be achieved. This self-contained book provides operational guidelines to avoid drilling vibrations. Furthermore, since the modeling and control techniques presented here can be generalized to treat diverse engineering problems, it constitutes a useful resource to researchers working on control and its engineering application in oil well drilling.
This book provides a representative assessment of the state of the art of research on Paleogene rotaliid larger foraminifera. It gives an overview of the current understanding of systematics of this group and, in particular, of its biostratigraphic importance and palaeobiogeography. The senior author of the work, late Professor Hottinger, a leading scientist in the field, both from a systematic and applied side, presents in this book his most recent advances. The foraminiferal family Rotaliidae is a traditional group used frequently which plays an important role for petroleum exploration in the biostratigraphy and palaeobiogeography of Paleogene shallow water deposits in the Middle East. This book aims to introduce rotaliid representatives as index fossils that can be recognized in random thin-sections of cemented rocks. The book is generously illustrated with an unprecedented degree of accuracy. The selection of taxa is restricted to forms having lived in the Paleocene and the Eocene, where their biostratigraphic significance is much higher than during later epochs. However, some additional rotaliid taxa, from the Late Cretaceous or that do not belong to the family Rotaliidae sensu stricto, are included in this book in order to demonstrate particular roots of rotaliid phylogenetic lineages in the previous community maturation cycle or to delimit the taxon Rotaliidae with more precision. This book can be considered as a reference in the field.
Providing a critical and extensive compilation of the downstream processes of natural gas that involve the principle of gas processing , transmission and distribution, gas flow and network analysis, instrumentation and measurement systems and its utilisation, this book also serves to enrich readers understanding of the business and management aspects of natural gas and highlights some of the recent research and innovations in the field. Featuring extensive coverage of the design and pipeline failures and safety challenges in terms of fire and explosions relating to the downstream of natural gas technology, the book covers the needs of practising engineers from different disciplines, who may include project and operations managers, planning and design engineers as well as undergraduate and postgraduate students in the field of gas, petroleum and chemical engineering. This book also includes several case studies to illustrate the analysis of the downstream process in the gas and oil industry. Of interest to researchers is the field of flame and mitigation of explosion: the fundamental processes involved are also discussed, including outlines of contemporary and possible future research and challenges in the different fields.
Liberating Energy from Carbon analyzes energy options in a carbon-constrained world. Major strategies and pathways to decarbonizing the carbon-intensive economy are laid out with a special emphasis on the prospects of achieving low-risk atmospheric CO2 levels. The opportunities and challenges in developing and bringing to market novel low and zero-carbon technologies are highlighted from technical, economic and environmental viewpoints. This book takes a unique approach by treating carbon in a holistic manner-tracking its complete transformation chain from fossil fuel sources to the unique properties of the CO2 molecule, to carbon capture and storage and finally, to CO2 industrial utilization and its conversion to value-added products and fuels. This concise but comprehensive sourcebook guides readers through recent scientific and technological developments as well as commercial projects that aim for the decarbonization of the fossil fuel-based economy and CO2 utilization that will play an increasingly important role in the near- and mid-term future. This book is intended for researchers, engineers, and students working and studying in practically all areas of energy technology and alternative energy sources and fuels.
The first volume in a new Springer Series on Shipping and Transport Logistics, Oil Transport Management provides a full historical account of the evolution of the oil transport industry since the 1800's. In this comprehensive guide, the authors investigate the industry and describe the shipping market and its structure, as well as forecasting, location plan and the transportation chain. They dedicate a separate chapter to each topic to cover various concepts, including: an introduction to the tanker shipping market, including how the freight, new vessel building, second hand and demolition markets influence one another, the economic structure and organization of the tanker industry in both the past and present, and forecasting the need for oil-based sea transportation. Further chapters present case studies and simulations to illustrate the importance of factory location decisions and the need for oil infrastructure investments. Chapter One also includes a regression equation to predict the fleet size in tanker shipping. Oil Transport Management is a key reference, which can be practically applied to wider global research and practices. Ideal for both industry practitioners, and researchers and
students of shipping studies, Oil Transport Management provides a
concise yet comprehensive coverage of the oil transport industry's
history and a guide for its future development.
This timely book explores the lessons learned in and potentials of injecting supercritical CO2 into depleted oil and gas reservoirs, in order to maximize both hydrocarbon recovery and the storage capacities of injected CO2. The author provides a detailed discussion of key engineering parameters of simultaneous CO2 enhanced oil recovery and CO2 storage in depleted hydrocarbon reservoirs. These include candidate site selection, CO2 oil miscibility, maximizing CO2-storage capacity in enhanced oil recovery operations, well configurations, and cap and reservoir rock integrity. The book will help practicing professionals devise strategies to curb greenhouse gas emissions from the use of fossil fuels for energy production via geologic CO2 storage, while developing CO2 injection as an economically viable and environmentally sensible business model for hydrocarbon exploration and production in a low carbon economy.
This book explores the industrial use of secure, permanent storage technologies for carbon dioxide (CO2), especially geological CO2 storage. Readers are invited to discover how this greenhouse gas could be spared from permanent release into the atmosphere through storage in deep rock formations. Themes explored here include CO2 reservoir management, caprock formation, bio-chemical processes and fluid migration. Particular attention is given to groundwater protection, the improvement of sensor technology, borehole seals and cement quality. A collaborative work by scientists and industrial partners, this volume presents original research, it investigates several aspects of innovative technologies for medium-term use and it includes a detailed risk analysis. Coal-based power generation, energy consuming industrial processes (such as steel and cement) and the burning of biomass all result in carbon dioxide. Those involved in such industries who are considering geological storage of CO2, as well as earth scientists and engineers will value this book and the innovative monitoring methods described. Researchers in the field of computer imaging and pattern recognition will also find something of interest in these chapters.
Tight gas reservoirs have very low permeability and porosity, which cannot be produced at economical flow rates unless the well is efficiently stimulated and completed using advanced and optimized technologies. Economical production on the basis of tight gas reservoirs is challenging in general, not only due to their very low permeability but also to several different forms of formation damage that can occur during drilling, completion, stimulation, and production operations. This study demonstrates in detail the effects of different well and reservoir static and dynamic parameters that influence damage mechanisms and well productivity in tight gas reservoirs. Geomechanics, petrophysics, production and reservoir engineering expertise for reservoir characterization is combined with a reservoir simulation approach and core analysis experiments to understand the optimum strategy for tight gas development, delivering improved well productivity and gas recovery.
Our energy use and its consequences (including climate change) motivate some of the most contentious and complex public debates of our time. Although these issues are often cast in terms of renewable versus non-renewable energy, in reality both depend on finite Earth resources. The evolution of the Earth itself therefore offers a uniquely illuminating perspective from which to evaluate alternative pathways toward energy and environmental sustainability. Geofuels: Energy and the Earth systematically develops this perspective using informal, nontechnical language laced with humor. It is well suited to a broad readership, ranging from beginning university students to lifelong learners who are interested in how the Earth's past will influence their own future. It also provides simplified explanations of controversial topics, such as energy return on energy investment, peak oil, and fracking. The focus throughout is on building a sound physical understanding of how natural resources constrain our use of energy.
This book studies the "Redox Complex", a complex of unconventional geophysical-geochemical exploration techniques used for the indirect detection, characterization and evaluation of various metal targets, while also illustrating selected applications of unconventional geophysical-geochemical methods for oil exploration in Cuba. This complex is successfully applied in various fields: oil & gas and metal ores exploration; studies of oil and metal contaminants in soils; and the search for metallic archaeological burials. The use of these techniques is intended to complement the conventional prospecting complex by reducing areas and/or facilitating the selection of the most favorable targets, improving the economical-geological effectiveness of investigations in the process. Further, the Redox Complex can be implemented without physical or chemical damage to the environment. The book's primary goals are to: 1) outline the general features characterizing the processes of metal mobilization, transport and accumulation on surficial media; 2) outline the methodology, data interpretation and mathematical apparatus that support quantitative estimates of the Redox Complex; and 3) design a database and applications system (the Redox System) to address storage processes, reports, graphics and the corresponding interpretations of the Redox Complex in a quick and reliable way. To do so, it examines the regions of Havana-Matanzas (Varadero Oil Field, Cantel Oil Field and Madruga Prospect) and Ciego de Avila (Pina Oil Field, Cristales Oil Field, Jatibonico Oil Field, Jatibonico Oeste Prospect and Cacahual Prospect). The methods covered include, in some cases, airborne gamma spectrometry (K/eTh ratio) beside ORP and, in others, the Redox Complex with reduced or standard attributes. In all cases, the anomalous complex of interest corresponds to the correlation of the minimum K/eTh ratio with minimum ORP and, in the case of the Redox Complex, Magnetic Susceptibility highs with ORP lows, Spectral Reflectance lows and maximum Content of Chemical Elements (V, Ni, Pb, Zn, Fe).
This book will cover the most recent progress on the use of low-cost nanomaterials and development of low-cost/large scale processing techniques for greener and more efficient energy related applications, including but not limited to solar cells, energy storage, fuel cells, hydrogen generation, biofuels, etc. Leading researchers will be invited to author chapters in the field with their expertise. Each chapter will provide general introduction to a specific topic, current status of research and development, research challenges and outlook for future direction of research. This book aims to benefit a broad readership, from undergraduate/graduate students to researchers working on renewable energy.
'The book is clearly organized. Only important facts are addressed; the sequence of the chapters is logical, the text is well-written and therefore, very readable. In addition, the meaning of geoscientific terms is clearly explained. Definitions are provided in a glossary which is easy to use. It is an excellent tool, which will be of value and benefit to the global petroleum community. I am pleased to recommend it.'M L BordenaveMouvOil SAThis book covers the fundamentals of the earth sciences and examines their role in controlling the global occurrence and distribution of hydrocarbon resources. It explains the principles, practices and the terminology associated with the upstream sector of the oil industry. Key topics include a look at the elements and processes involved in the generation and accumulation of hydrocarbons and demonstration of how geological and geophysical techniques can be applied to explore for oil and gas. There is detailed investigation into the nature and chemical composition of petroleum, and of surface and subsurface maps, including their construction and uses in upstream operations. Other topics include well-logging techniques and their use in determining rock and fluid properties, definitions and classification of resources and reserves, conventional oil and gas reserves, their quantification and global distribution as well as unconventional hydrocarbons, their worldwide occurrence and the resources potentially associated with them. Finally, practical analysis is concentrated on the play concept, play maps, and the construction of petroleum events charts and quantification of risk in exploration ventures.As the first volume in the Imperial College Lectures in Petroleum Engineering, and based on a lecture series on the same topic, An Introduction to Petroleum Geoscience provides the introductory information needed for students of the earth sciences, petroleum engineering, engineering and geoscience.This volume also includes an introduction to the series by Martin Blunt and Alain Gringarten, of Imperial College London.
Carbon Capture and Storage technologies (CCS) are moving from experiment toward commercial applications at a rapid pace, driven by urgent demand for carbon mitigation strategies. This book examines the potential role of CCS from four perspectives: technology development, economic competitiveness, environmental and safety impacts, and social acceptance. IEK-STE of Forschungszentrum Juelich presents this interdisciplinary study on CCS, based on methods of Integrated Technology Assessment. Following an introductory chapter by editor Wilhelm Kuckshinrichs, Part I of the book surveys the status of carbon capture technologies, and assesses the potential for research and development of applications that are useful at scales required for meaningful mitigation. Transportation, Utilization and Environmental Aspects of CO2 receive chapter-length treatments, and the section concludes with an examination of safe geological storage of CO2 based on the example of the Ketzin pilot site, not far from Berlin. Part II covers Economic and Societal Perspectives. The first chapter discusses the use of CCS in the energy sector, analyzing costs associated with electricity generation and CO2 mitigation on the basis of technology-specific cost and process parameters, along with a merit-order illustration of the possible implications of CCS facilities for energy costs. Later chapters outline the costs of CCS application in energy- and CO2-intensive industries; analyze system characteristics of CCS infrastructures, showing that the infrastructure cost function depends on the ratio of fixed to variable costs, as well as on the spatial distribution of CO2 sources and storage facilities; interpret cross-sector carbon mitigation strategies and their impacts on the energy and CO2 balance; and discuss awareness and knowledge of CCS, attitudes towards it, and how the risks and benefits of CCS are perceived. Part III discusses the Framework for Energy and Climate Policy, with chapters on acceptance and adoption of CCS policy in Germany, and the EU, and an assessment of international cooperation in support of CCS. The final chapter summarizes the central arguments, discusses the potential role of carbon capture and utilization as part of a German transformation strategy, and extrapolates the findings to European and international contexts. |
You may like...
Crises in Oil, Gas and Petrochemical…
Mohammad Reza Rahimpour, Babak Omidvar, …
Paperback
R4,566
Discovery Miles 45 660
Solid Fuel Blending - Principles…
David Tillman, Dao Duong, …
Hardcover
R2,074
Discovery Miles 20 740
Risk Assessment and Management for Ships…
Yong Bai, Jeom Kee Paik
Paperback
R5,740
Discovery Miles 57 400
Handbook of Biofuels Production…
Rafael Luque, Carol Sze Ki Lin, …
Paperback
R6,671
Discovery Miles 66 710
Ultra-Supercritical Coal Power Plants…
Dongke Zhang Ftse
Hardcover
Education and Training for the Oil and…
Phil Andrews, Jim Playfoot
Hardcover
R2,056
Discovery Miles 20 560
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Elements of Petroleum Geology
Richard C. Selley, Stephen A Sonnenberg
Hardcover
|