Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
This book focuses on the links between deep earth (mantle) and shallow processes in areas of active tectonics in the Arabian Plate and Surrounding Areas. It also provides key information for energy resources in these areas. The book is a compilation of selected papers from the Task Force of the International Lithosphere Program (ILP). It comprises a set of research studies from the Middle East, North Africa and the Mediterranean domain focusing on (1) the architecture, geodynamic evolution and modelling of the Red Sea rift system and its surroundings, and tectonics and sedimentation in the Gulf of Corinth, (2) the crustal architecture and georesources of the North Algerian Offshore, (3) Reservoirs, aquifers and fluid transfers in Saudi Basins, Petroleum systems and salt tectonics in Yemen and (4) Cretaceous-Eocene foreland inversions in Saudi Arabia.
This book concisely describes the architecture of the oil and gas pipelines in the Black-Caspian Seas Region and analyzes the status quo and perspectives of oil and gas production in this region. The authors present numerous projects, each of which has made a substantial contribution to the development of pipeline transport and transit in this part of the world, and discuss them in detail. The topics covered include: the region's geographic characteristics; the region's hydrocarbon potential; Russian and EU policy on pipeline transport; Kazakhstan's pipeline policy; Chinese pipeline projects; the Bulgarian gas transmission system; environmental risks in the production and transportation of hydrocarbons; satellite monitoring; and subsea leak detection. This volume offers a valuable resource for politicians, specialists in the oil and gas business, decision-makers, and environmentalists alike.
This book presents the essential principles and applications of seismic oil-exploration techniques. It concisely covers all stages in exploration activities (data field acquisition, data processing and interpretation), supplementing the main text with a wealth of (>350) illustrations and figures. The book concentrates on the physics of the applied principles, avoiding intricate mathematical treatment and lengthy theoretical reasoning. A further prominent feature is the inclusion of a separate chapter on 3D surveying techniques and another, equally important chapter on seismic digital signals and the aliasing problem, which is presented in an accessible form. The book is designed to meet the needs of both the academic and industrial worlds. University students and employees of oil-exploration companies alike will find the book to be a valuable resource.
Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Details the equipment and components and possible impacts due to composition. Explores the process options and parameters involved in dewatering, desalting and distillation. Considers next generation processes and developments
This book reviews and characterises promising single-compound solvents, solvent blends and advanced solvent systems suitable for CO2 capture applications using gas-liquid absorption. Focusing on energy efficient solvents with minimal adverse environmental impact, the contributions included analyse the major technological advantages, as well as research and development challenges of promising solvents and solvent systems in various sustainable CO2 capture applications. It provides a valuable source of information for undergraduate and postgraduate students, as well as for chemical engineers and energy specialists.
This book analyzes hydrocarbon generation and accumulation within space-limited source rocks. The authors draw conclusions based on the principles of basin formation, hydrocarbon generation and accumulation, coupled with the practice of terrigenous basins in eastern China. Hydrocarbon generation and expulsion have been quantitatively assessed in space-limited source rock systems. This book explores new hydrocarbon generation and expulsion models to reflect real geological situations more accurately. The theory and practice proposed in this book challenge the traditional theory of kerogen thermal degradation and hydrocarbon generation.
This book introduces the underlying concepts of column dynamics and buckling, based on the latest state-of-the-art research on this innovative topic. It begins with a summary of the basic concepts behind column dynamics and buckling, before moving on to the models for studying dynamic buckling inside oil wells. Four models with increasing complexity are presented: columns without friction; columns with friction; columns inside slant wells; and columns inside offshore wells. Each model is divided into two cases, depending on whether the column is being tripped in or out. A case study is used to demonstrate these models and is further developed as each model is presented and explained. The results include comparisons between the models themselves, thus showing the implications of the adopted hypotheses of each. This book enables academic, industrial, and graduate student readers to fully understand the fundamentals of dynamic buckling and to further develop the presented models for their own research.
Development of Volcanic Gas Reservoirs: The Theory, Key Technologies and Practice of Hydrocarbon Development introduces the geological and dynamic characteristics of development in volcanic gas reservoirs, using examples drawn from the practical experience in China of honing volcanic gas reservoir development. The book gives guidance on how to effectively develop volcanic gas reservoirs and similar complex types of gas reservoir. It introduces basic theories, key technologies and uses practical examples. It is the first book to systematically cover the theories and key technologies of volcanic gas reservoir development. As volcanic gas reservoirs constitute a new research area, the distribution and rules for development still being studied. Difficulties in well deployment and supportive development technology engender further challenges to development. However, in the past decade, research and development in the Songliao and Junggar Basins has led to marked achievements in volcanic gas reservoir development.
This book focuses on the underlying mechanisms of lost circulation and wellbore strengthening, presenting a comprehensive, yet concise, overview of the fundamental studies on lost circulation and wellbore strengthening in the oil and gas industry, as well as a detailed discussion on the limitations of the wellbore strengthening methods currently used in industry. It provides several advanced analytical and numerical models for lost circulation and wellbore strengthening simulations under realistic conditions, as well as their results to illustrate the capabilities of the models and to investigate the influences of key parameters. In addition, experimental results are provided for a better understanding of the subject. The book provides useful information for drilling and completion engineers wishing to solve the problem of lost circulation using wellbore strengthening techniques. It is also a valuable resource for industrial researchers and graduate students pursuing fundamental research on lost circulation and wellbore strengthening, and can be used as a supplementary reference for college courses, such as drilling and completion engineering and petroleum geomechanics.
This contributed volume presents a multi-perspective collection of the latest research findings on oil and gas exploration and imparts insight that can greatly assist in understanding field behavior, design of test programs, and design of field operations. With this book, engineers also gain a powerful guide to the most commonly used numerical simulation methods that aid in reservoir modelling. In addition, the contributors explore development of technologies that allow for cost effective oil and gas exploration while minimizing the impact on our water resources, surface and groundwater aquifers, geological stability of impacted areas, air quality, and infrastructure assets such as roads, pipelines, water, and wastewater networks. Easy to understand, the book identifies equipment and procedural problems inherent to oil and gas operations and provides systematic approaches for solving them.
Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference.
This book offers a compact guide to geological core analysis, covering both theoretical and practical aspects of geological studies of reservoir cores. It equips the reader with the knowledge needed to precisely and accurately analyse cores. The book begins by providing a description of a coring plan, coring, and core sampling and continues with a sample preparation for geological analysis. It then goes on to explain how the samples are named, classified and integrated in order to understand the geological properties that dictate reservoir characteristics. Subsequently, porosity and permeability data derived from routine experiments are combined to define geological rock types and reduce reservoir heterogeneity. Sequence stratigraphy is introduced for reservoir zonation. Core log preparation is also covered, allowing reservoirs to be analysed even more accurately. As the study of core samples is the only way to accurately gauge reservoir properties, this book provides a useful guide for all geologists and engineers working with subsurface samples.
This book provides an overview of the major changes induced by hydrocarbons (HCs) affecting rocks and surface sediments and their implications for non-seismic exploration methods, particularly for marine territories near Cuba. It examines the use of a digital elevation model (DEM) at 90x90m resolution for the detection of subtle, positive geomorphic anomalies related to hydrocarbon microseepage (vertical migration) on possible oil and gas targets. The results support the conclusion that the DEM data provides a low cost and fast offshore oil and gas preliminary exploration strategy. This data is useful serving to focus prospective areas with supplementary unconventional methods such as magnetic-induced polarization (MIP), useful to propose more expensive volumes for detailed 2D-3D seismic surveys.
This book summarizes the authors' extensive experience and interdisciplinary approach to demonstrate how acquiring and integrating data using a variety of analytical equipment can provide better insights into unconventional shale reservoir rocks and their constituent components. It focuses on a wide range of properties of unconventional shale reservoirs, discussing the use of conventional and new analytical methods for detailed measurements of mechanical properties of both organic and inorganic constituent elements as well as of the geochemical characteristics of organic components and their origins. It also addresses the investigation of porosity, pore size and type from several perspectives to help us to define unconventional shale formation. All of these analyses are treated individually, but brought together to present the rock sample on a macro scale. This book is of interest to researchers and graduate students from various disciplines, such as petroleum, civil, and mechanical engineering, as well as from geoscience, geology, geochemistry and geophysics. The methods and approaches can be further extended to biology and medicine.
Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures.
Formation Damage during Improved Oil Recovery: Fundamentals and Applications bridges the gap between theoretical knowledge and field practice by presenting information on formation damage issues that arise during enhanced oil recovery. Multi-contributed technical chapters include sections on modeling and simulation, lab experiments, field case studies, and newly proposed technologies and methods that are related to formation damage during secondary and tertiary recovery processes in both conventional and unconventional reservoirs. Focusing on both the fundamental theories related to EOR and formation damage, this reference helps engineers formulate integrated and systematic designs for applying EOR processes while also considering formation damage issues.
This book addresses the problems involved in the modelling and simulation of shale gas reservoirs, and details recent advances in the field. It discusses various modelling and simulation challenges, such as the complexity of fracture networks, adsorption phenomena, non-Darcy flow, and natural fracture networks, presenting the latest findings in these areas. It also discusses the difficulties of developing shale gas models, and compares analytical modelling and numerical simulations of shale gas reservoirs with those of conventional reservoirs. Offering a comprehensive review of the state-of-the-art in developing shale gas models and simulators in the upstream oil industry, it allows readers to gain a better understanding of these reservoirs and encourages more systematic research on efficient exploitation of shale gas plays. It is a valuable resource for researchers interested in the modelling of unconventional reservoirs and graduate students studying reservoir engineering. It is also of interest to practising reservoir and production engineers.
This book offers a first-of-its-kind, standalone review of coalbed methane (CBM) in India, covering all the major technical and policy aspects. As an authoritative text on CBM in India, it addresses the essential geological, engineering and policy issues. The Coalbed Methane industry is a rapidly developing sector in Indian energy supply. The book presents the characteristics of coal beds in India's Damodar and Son river valleys, which influence the commercial viability of CBM in the regions, as well as a study of the gas contents of the country's major coalfields. The book begins with a brief review of methane emissions from Indian coal mines and the current coalbed methane situation in the country. Its unique features include a coalfield-by-coalfield technical assessment of CBM throughout India. Policy matters are addressed, including the National Exploration Licencing Policy (NELP) of the Indian Government Ministry of Petroleum and Natural Gas, which is vital to an overall understanding of CBM development in the country. The scope and depth of its book's coverage will benefit students, practising engineers, researchers and policy-makers.
This book addresses several issues related to hydrate inhibition and monoethylene glycol (MEG) recovery units (MRUs) in offshore natural gas fields, from fundamentals to engineering aspects and from energy consumption assessment to advanced topics such as exergy analysis. The assessment of energy degradation in MRUs is critical in offshore rigs, and the topic of exergy theory has by no means been completely explored; it is still being developed. The book presents a comprehensive, yet concise, formulation for exergy flow and examines different approaches for the reference state of MEG and definition of the reference environment so as to obtain an effective exergy analysis with consistent results. It also provides new and useful information that has a great potential in the field of exergy analysis application by assessing energy degradation for three well-known MRU technologies on offshore rigs: the Traditional Atmospheric Distillation Process; the Full-Stream Process; and the Slip-Stream Process. The book then elucidates how the main design parameters impact the efficiency of MEG recovery units and offers insights into thermodynamic efficiency based on case studies of general distillation-based processes with sharp or not too sharp cut, providing ranges for expected values of efficiencies and enhancing a global comprehension of this subject. Since MEG recovery is an energy consuming process that invariably has to be conducted in a limited space and with limited power supply, the book is a valuable resource for those involved in design, engineering, economic evaluation and environmental evaluation of topside processing on offshore platforms for natural gas production.
Biohydrogen: For Future Engine Fuel Demands covers the production, purification, storage, pipeline transport, usage, and safety of biohydrogen. Hydrogen promises to be the most significant fuel source of the future, due to its global availability and the fact that water is its only by-product. Biofuels such as bioethanol, biodiesel, bio-oil, and biohydrogen are produced using technologies for thermochemically and biologically converting biomass. Hydrogen fuel production technologies can make use of either non-renewable sources, or renewable sources such as wind, solar, and biorenewable resources. Biohydrogen: For Future Engine Fuel Demands reviews all of the modern biomass-based transportation fuels, including bioethanol, biodiesel, biogas, biohydrogen, and fuel cells. The book also discusses issues of biohydrogen economy, policy and environmental impact. Biohydrogen looks set to be the fuel of choice in the future, replacing both fossil fuels and biorenewable liquid fuels.
This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a large number of numerical examples, all fully equipped with online code and data, allowing the reader to reproduce results, and use them as a starting point for their own work. All of the examples in the book are based on the MATLAB Reservoir Simulation Toolbox (MRST), an open-source toolbox popular popularity in both academic institutions and the petroleum industry. The book can also be seen as a user guide to the MRST software. It will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods. This title is also available as Open Access on Cambridge Core.
This book provides information on proper underground mine ventilation in order to detail its importance in maintaining safe, productive, healthy and effective underground environments at all times for employees. The text covers correct design, implementation and maintenance of mine ventilation through suitable fan installation, and keeps in mind the economic requirements of undertaking safe procedures and implementations to ensure that ventilation is optimal. Through three main goals, the book addresses the need for proper fan ventilation in the potentially hazardous conditions of an underground mine. The first goal is to summarize and update the technical information on the strategic importance of selecting suitable techno-commercial main mechanical ventilators for a coal mine. The second goal is to provide a user friendly computer program to help any practicing engineers, mine operators, regulators and researchers in choosing the main mechanical ventilators. Factors in this selection process include environmental requirements, regulatory conditions, occupational health related issues, and cost. The third goal is to provide applications for computer programs meant to determine proper selection and implementation of the main mechanical ventilators. The text is geared towards teachers, researchers, policy makers, environmental organizations and mine operators who wish to teach about or implement the best possible ventilation systems for the health and safety of mine workers.
This book is a product of the initial phase of a broader study evaluating the voluntary and regulatory compliance protocols that are used to account for the contributions of forests in U.S.-based greenhouse gas (GHG) mitigation programs. The research presented here is particularly concerned with these protocols' use of the USDA Forest Service's Forest Inventory and Analysis (FIA) data to describe forest conditions, ownership, and management scenarios, and is oriented towards providing regulators and other interested parties with an objective comparison of the options, uncertainties, and opportunities available to offset GHG emissions through forest management. Chapters focus on the protocols for recognizing forest carbon offsets in the California carbon cap-and-trade program, as described in the Compliance Offset Protocol; U.S. Forest Projects (California Air Resources Board, 2011). Readers will discover the protocols used for quantifying the offset of GHG emissions through forest-related project activity. As such, its scope includes a review of the current methods used in voluntary and compliance forest protocols, an evaluation of the metrics used to assign baselines and determine additionality in the forest offset protocols, an examination of key quantitative and qualitative components and assumptions, and a discussion of opportunities for modifying forest offset protocols, in light of the rapidly changing GHG-related policy and regulatory environment. Finally, the report also discusses accounting and policy issues that create potential barriers to participation in the California cap-and-trade program, and overall programmatic additionality in addressing the needs of a mitigation strategy.
This timely book explores the lessons learned in and potentials of injecting supercritical CO2 into depleted oil and gas reservoirs, in order to maximize both hydrocarbon recovery and the storage capacities of injected CO2. The author provides a detailed discussion of key engineering parameters of simultaneous CO2 enhanced oil recovery and CO2 storage in depleted hydrocarbon reservoirs. These include candidate site selection, CO2 oil miscibility, maximizing CO2-storage capacity in enhanced oil recovery operations, well configurations, and cap and reservoir rock integrity. The book will help practicing professionals devise strategies to curb greenhouse gas emissions from the use of fossil fuels for energy production via geologic CO2 storage, while developing CO2 injection as an economically viable and environmentally sensible business model for hydrocarbon exploration and production in a low carbon economy.
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry. |
You may like...
Production and Purification of…
Yun Hang Hu, Xiaoliang Ma, …
Hardcover
R5,409
Discovery Miles 54 090
Glycerine Production and Transformation…
Marco Frediani, Mattia Bartoli, …
Hardcover
|