![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies
Mechanics, the oldest branch of physics, to this day remains the basis for modern technology. This is especially evident with regard to the oil and gas industry. Almost all of the technological processes in these branches of industry, from the drilling of wells to the transporting of oil and gas products via pipelines, are mechanical in their nature. The processes of the development of oil and gas deposits are of primary importance in the whole technological chain of oil and gas extraction from the rocks and their transportation to the customer. The use of scientific methods for improving technology is a long-established tradition of oil and gas industry. For the Western reader, it is enough to mention the fundamental treatises by the outstanding American research scientist and engineer M. Muskat (1937, 1949) as well as the excellent books of Scheidegger (1960) and Collins (1961) which combine practical goals with profound theoretical analysis. The initiators of the application of mechanics for solving problems of the oil and gas industry in the U.S.S.R. were V.G. Shukhov (1981) and LS. Leibenzon (1934, 1947, 1953, 1955) whose works constitute admirable examples of Soviet technical thought. During recent times, the magnitude of oil and gas extraction has increased immensely and many reservoirs with complicated physical and geological properties have, therefore, entered into the development. The fundamental problem of enhancing oil and gas recovery from rocks has been intensively and deeply analyzed.
The first edition of this book demystified the process of well log analysis for students, researchers and practitioners. In the two decades since, the industry has changed enormously: technical staffs are smaller, and hydrocarbons are harder to locate, quantify, and produce. New drilling techniques have engendered new measurement devices incorporated into the drilling string. Corporate restructuring and the "graying" of the workforce have caused a scarcity in technical competence involved in the search and exploitation of petroleum. The updated 2nd Edition reviews logging measurement technology developed in the last twenty years, and expands the petrophysical applications of the measurements.
This book offers an introduction to the geomechanical issues raised by both the extraction of actual and potential energy resources, and by the treatment of the ensuing environmental concerns. Discussions of the operations of injection of fluids into, and withdrawal from, geological formations link the chapters, each devoted to a particular technical aspect or scientific issue, or to a particular energy resource.Subjects are ordered according to their industrial applications, including enhanced oil and gas recovery, gas hydrates, enhanced geothermal systems, hydraulic fracturing, and carbon dioxide sequestration. An overview of the industrial, research and simulation aspects for each subject is provided. Fluid Injection in Deformable Geological Formations will be of interest to academic and industrial researchers in a wide variety of fields, including computational mechanics, civil engineering, geotechnical engineering and geomechanics, engineering seismology, petroleum engineering, reservoir engineering, and engineering geology.
Convective heat tranfer is the result of fluid flowing between objects of different temperatures. Thus it may be the objective of a process (as in refrigeration) or it may be an incidental aspect of other processes. This monograph reviews in a concise and unified manner recent contributions to the principles of convective heat transfer for single- and multi-phase systems: It summarizes the role of the fundamental mechanism, discusses the governing differential equations, describes approximation schemes and phenomenological models, and examines their solutions and applications. After a review of the basic physics and thermodynamics, the book divides the subject into three parts. Part 1 deals with single-medium transfer, specifically with intraphase transfers in single-phase flows and with intramedium transfers in two-phase flows. Part 2 deals with fluid-solid transfer processes, both in cases where the interface is small and in cases where it is large, as well as liquid-liquid transfer processes. Part 3 considers three media, addressing both liquid-solid-solid and gas-liquid-solid systems.
Unconventional Shale Gas Development: Lessons Learned gives engineers the latest research developments and practical applications in today's operations. Comprised of both academic and corporate contributors, a balanced critical review on technologies utilized are covered. Environmental topics are presented, including produced water management and sustainable operations in gas systems. Machine learning applications, well integrity and economic challenges are also covered to get the engineer up-to-speed. With its critical elements, case studies, history plot visuals and flow charts, the book delivers a critical reference to get today's petroleum engineers updated on the latest research and applications surrounding shale gas systems.
This book considers the problem of determining how many barrels of crude oil an oil-producing and exporting country should produce annually for export along with several other important problems that decision-makers in the crude oil industry face and discusses procedures for finding optimum solutions for them. It considers the important Objective Functions they need in making these critical decisions, and discusses procedures to find the best solutions. Outputs from the treatment units, in an oil refinery are only semi-finished products; these are blended into finished products like gasoline, diesel oil, etc., meeting various specifications that the marketplace demands. The book discusses models for solving these problems optimally with examples.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.
This revised and enlarged edition covers the latest developments in advanced energy technology and in the derivation and application of synthetic fuels. The entries provide information for students in many disciplines, professionals who need to keep in touch with the most recent research and the casual user in need of enlightenment on a technical subject. Energy studies, fuel technology, engineering, ecology and economics are among the disciplines which are brought to bear on this many-faceted topic.
In recent years, interest in the technology of gas cleaning has grown, driven partly by environmental legislation, but also by demands for increases in process efficiency and intensity - notable for power generation and waste incineration. This book, which leads on from our successful Gas Cleaning at High Temperatures, describes the present state of the art and its industrial applications.
This book provides extensive information on high-temperature H2S removal for integrated gasification combined cycle (IGCC) coarse gas, together with briefly introductions to the concept of clean coal technology, and to the mechanism and kinetics of hot coal gas desulfurizers. Readers will gain a comprehensive understanding of available control methods for high-temperature H2S removal in IGCC coarse gas and how the technology has been adopted by industry. As such, the book offers a unique resource for researchers and engineers in the fields of energy science and technology, environmental science and technology, and chemical engineering.
This textbook deals with the physics and chemistry of energy resources, bringing together material having to do with a wide range of resources - coal gas, oil, hydropower, and nuclear. After a brief introduction to the concepts of force, work, and energy the book discusses energy resources: specifically, the worldwide reserves of fossil fuels, the uses to which these fuels are put, and the conversion of fuels into other forms - such as the conversion of coal to gas or liquid fuels. This is followed by discussions of electric power and of nuclear, solar, geothermal and other methods for generating electricity. The discussion then turns to the uses of energy in agriculture, transportation and so forth, and the pollution that accompanies these uses. The book concludes with discussions of energy conservation and projections of energy supplies for the future. Intended for a general-education course in natural sciences, it will also be useful for teachers of science in high schools. The presentation assumes no prior knowledge of physics or chemistry, but it includes the necessary background information where needed.
This book provides the reader with a comprehensive understanding of the applications of chemostratigraphy. The first chapter of the book offers an introduction to the technique. This is followed by a chapter detailing sample preparation and analytical techniques. Chapter 3 focuses on the techniques utilised to establish the mineralogical affinities of elements, while the general principles of how to build a chemostratigraphic scheme are covered in Chapter 4. Chapters 5, 6 and 7 provide information on the applications of chemostratigraphy to clastic, carbonate and unconventional reservoirs respectively, and various case studies are presented. Wellsite applications, a discussion and conclusion section form the latter part of the book. The book will appeal to graduate and post graduate students of geology and professionals working in the hydrocarbon sector as a key reference text in chemostratigraphy.
With substantial contributions from experienced industrial scientists and engineers, this work will have real application towards improving process efficiency and improvement in the trillion-dollar global petroleum industry. It presents an overview of the emerging field of petroleomics, which endeavors to understand the fundamental components of crude oil. Petroleomics promises to revolutionize petroleum science in much the same way that genomics transformed the study of medicine not long ago. Asphaltenes are a particular focus, with many chapters devoted to the analysis of their structure and properties.
This book presents selected articles from the workshop on "Challenges in Petrophysical Evaluation and Rock Physics Modeling of Carbonate Reservoirs" held at IIT Bombay in November 2017. The articles included explore the challenges associated with using well-log data, core data analysis, and their integration in the qualitative and quantitative assessment of petrophysical and elastic properties in carbonate reservoirs. The book also discusses the recent trends and advances in the area of research and development of carbonate reservoir characterization, both in industry and academia. Further, it addresses the challenging concept of porosity portioning, which has huge implications for exploration and development success in these complex reservoirs, enabling readers to understand the varying orders of deposition and diagenesis and also to model the flow and elastic properties.
The overall goal in this book is to explain key economic, environmental, technology, and transportation factors that are affecting the provincial and industrial energy intensities and environmental pollution in the People's Republic of China (China). The author defines energy intensity as the energy consumption per unit of output. She concentrates on China, because it is the second largest energy user and pollution generator in the world. In this book, the focus is on the cokemaking sector in the Shanxi Province. Cokemaking is the largest consumer of coal in the region, using more than one-half of the coal consumed there. Throughout the book, the author stresses the important role of the Shanxi Province in encouraging improvements in energy efficiency and pollution by (1) introducing new coke-oven technologies and (2) encouraging pollution-abatement measures for the older ovens.
lysts using enzyme, microbial, and plantbiochemistriesand genetic engi- neeringand "ProcessingResearch" describedtheconversionofplantcom- ponentsviaintegrationofmicrobiology,biochemistry,andchemistrywith engineering, separations, and hybrid systems. The "Enzymatic Processes and Enzyme Production" session focused on the manufacture and use of enzymes. The"IndustrialChemicals"sessionemphasizedrecentdevelop- mentsintheintegratedproductionandscale-upofchemicalsfrombiologi- cal rather than petrochemical routes. Special interest was on separation methods and their integrationintonew fermentation orhybrid processes. 35 oral presentations, a roundtable The technical program consisted of forum, two special topic discussions, and a poster session of 135 posters. Wecontinuedasuccessfulinformalroundtableserieswith"Bioenergy and Bioproducts: Forum on Recent Government Initiatives," which dis- cussedthePresident'sExecutiveOrder, the BioenergyInitiative, the Tech- nology Roadmap for Renewables Vision 2020, and other thrusts. These eventscontinuethe strongindustrial focus and activeindustrialparticipa- tionintheorganizingcommittee. Thishasbecomeverypopularbecauseit allows industrialand government participants to speakmore openly. AspecialTopicsDiscussionGroupwasheldon"C0 Sequestration," 2 ledby James W. Lee. Another onwas held on "Commercializationof Bio- mass-to-Ethanol" where chairs Jack N. Saddler and David J. Gregg made thegoal ofthisworkshop to showparticipantsthatweare close to demon- stratingthe technicalviability ofanintegratedbiomass-to-ethanolprocess and that progressive technical advances and policy decisions will likely greatly enhance the economic attractiveness of the process.
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.
Many oil refineries employ hydroprocessing for removing sulfur and other impurities from petroleum feedstocks. Capable of handling heavier feedstocks than other refining techniques, hydroprocessing enables refineries to produce higher quality products from unconventional - and formerly wasted - sources. Hydroprocessing of Heavy Oils and Residua illustrates how to obtain maximum yields of high-value products from heavy oils and residue using hydroprocessing technologies. While most resources on hydroprocessing concentrate ongas oil and lower boiling products, this book details the chemistry involved and the process modifications required for the hydroprocessing of heavy crude oils and residua. Emphasizing the use of effective catalysts to ensure cleaner and more efficient industrial fuel processes, the book presents key principles of heterogeneous catalyst preparation, catalyst loading, and reactor systems. It explains how to evaluate and account for catalysts, reactor type, process variables, feedstock type, and feedstock composition in the design of hydroprocessing operations. The text concludes with examples of commercial processes and discusses methods of hydrogen production. To meet the growing demand for transportation fuels and fuel oil, modern oil refineries must find ways to produce high quality fuel products from increasingly heavy feedstocks. Hydroprocessing of Heavy Oils and Residua contains the fundamental concepts, technologies, and process modifications refineries need to adapt current hydroprocessing technologies for processing heavier feedstocks.
This book explores the use of nanomaterials as diesel fuel additives. It extensively reviews the diesel engine characteristics and the most frequently used nanomaterials and nanofuels and discusses the practical issues regarding the viability of nanomaterials as fuel additives from technical, environmental, and human health viewpoints. Special attention is focused on questions related to the short-term use of nanomaterials in diesel engines, such as: * What are the most important nanomaterial activities in diesel engines? * What happens to nanomaterials at various stages, from the fuel tank to exhaust? * What are the effects of nanofuel usage on diesel engine characteristics? and * What are the effects of nanomaterials on diesel engine parts and systems? Given its scope, this book is a valuable resource for researchers and engineers in environmental science, mechanical engineering, and chemical engineering fields, as well as for advanced undergraduate and postgraduate students. |
![]() ![]() You may like...
Genetics and Neurobiology of Down…
Bani Bandana Ganguly
Paperback
Understanding Female Offenders…
Jason M Smith, Carl B Gacono, …
Paperback
The Moving Tablet of the Eye - The…
Nicholas Wade, Benjamin Tatler
Hardcover
R4,380
Discovery Miles 43 800
Tinnitus - An Interdisciplinary Approach…
Winfried Schlee, Berthold Langguth, …
Hardcover
Performance Psychology - Perception…
Markus Raab, Babett Lobinger, …
Hardcover
Statistics for Applied Behavior Analysis…
David J. Cox, Jason C. Vladescu
Paperback
R1,735
Discovery Miles 17 350
Neurological Complications of Systemic…
Herbert B. Newton, Mark G Malkin
Hardcover
R5,342
Discovery Miles 53 420
|