![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > General
This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.
Automation is nothing new to industry. It has a long tradition on the factory floor, where its constant objective has been to increase the productivity of manufacturing processes. Only with the advent of computers could the focus of automation widen to include administrative and information-handling tasks. More recently, automation has been extended to the more intellectual tasks of production planning and control, material and resource planning, engineering design, and quality control. New challenges arise in the form of flexible manu facturing, assembly automation, and automated floor vehicles, to name just a few. The sheer complexity of the problems as well as the state of the art has led scientists and engineers to concentrate on issues that could easily be isolated. For example, it was much simpler to build CAD systems whose sole objective was to ease the task of drawing, rather than to worry at the same time about how the design results could be interfaced with the manufacturing or assembly processes. It was less problematic to gather statistics from quality control and to print reports than to react immediately to first hints of irregularities by inter facing with the designers or manufacturing control, or, even better, by auto matically diagnosing the causes from the design and planning data. A heav- though perhaps unavoidable - price must today be paid whenever one tries to assemble these isolated solutions into a larger, integrated system."
The objective of the NATO Advanced Research Workshop "Learning electricity and electronics with advanced educational technology" was to bring together researchers coming from different domains. Electricity education is a domain where a lot of research has already been made. The first meeting on electricity teaching was organized in 1984 by R. Duit, W. Jung and C. von Rhoneck in Ludwigsburg (Germany). Since then, research has been going on and we can consider that the workshop was the successor of this first meeting. Our goal was not to organize a workshop grouping only people producing software in the field of electricity education or more generally in the field of physics education, even if this software was based on artificial intelligence techniques. On the contrary, we wanted this workshop to bring together researchers involved in the connection between cognitive science and the learning of a well defined domain such as electricity. So during the workshop, people doing research in physics education, cognitive psychology, and artificial intelligence had the opportunity to discuss and exchange. These proceedings reflect the different points of view. The main idea is that designing a learning environment needs the confrontation of different approaches. The proceedings are organized in five parts which reflect these different aspects.
A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.
The goal of Leakage in Nanometer CMOS Technologies is to provide ample detail so that the reader can understand why leakage power components are becoming increasingly relevant in CMOS systems that use nanometer scale MOS devices. Leakage current sources at the MOS device level including sub-threshold and different types of tunneling are discussed in detail. The book covers promising solutions at the device, circuit, and architecture levels of abstraction. Manifestation of these MOS device leakage components at the full chip level depends considerably on several aspects including the nature of the circuit block, its state, its application workload, and Process/Voltage/Temperature conditions. The sensitivity of the various MOS leakage sources to these conditions are described from the first principles. The resulting manifestations are discussed at length to help the reader understand the effectiveness of leakage power reduction solutions under these different conditions. Case studies are presented to highlight real world examples that reap the benefits of leakage power reduction solutions. mitigate increases in the leakage components as technology scales.
Method Engineering focuses on the design, construction and evaluation of methods, techniques and support tools for information systems development It addresses a number of important topics, including: method representation formalisms; meta-modelling; situational methods; contingency approaches; system development practices of method engineering; terminology and reference models; ontologies; usability and experience reports; and organisational support and impact.
Pulse Generation and Detection: Terahertz Radiation from ElectroOptic Crystals (X.C. Zhang et al.). Photoconductive Semiconductor Switches for High Power Radiation (G.M. Loubriel). Broadband Electronic Systems and Components: Pulse Generation and Compression on a TravellingWave MMIC Schottky Diode Array (M. Dragoman et al.). Precursor of an UltraWideband Radar System (A.S. Podgorski). Antennas and Arrays: Impulse Radiating Antennas (C.E. Baum, E.G. Farr). WideBandwidth Radiation from Arrays of Endfire Tapered Slot Antennas (D.H. Schaubert). Pulse Propagation and Guidance: Ultrashort Pulse Response in Nonlinear Dispersive Media (R. Albanese et al.). Modulation and Noise in Soliton Pulse Trains (J.M. Arnold). Scattering Theory and Computation: Phase Error Control for FDTD Methods (P.G. Petropoulos). Signal Processing Techniques: Stable Pole Extraction from Scattering Data (S.U. Pillai, T.I. Shim). 49 additional articles. Index.
The main aim of this book is twofold. Firstly, it shows engineers why it is useful to deal with, for example, Hilbert spaces, imbedding theorems, weak convergence, monotone operators, compact sets, when solving real-life technical problems. Secondly, mathematicians will see the importance and necessity of dealing with material anisotropy, inhomogeneity, nonlinearity and complicated geometrical configurations of electrical devices, which are not encountered when solving academic examples with the Laplace operator on square or ball domains. Mathematical and numerical analysis of several important technical problems arising in electrical engineering are offered, such as computation of magnetic and electric field, nonlinear heat conduction and heat radiation, semiconductor equations, Maxwell equations and optimal shape design of electrical devices. The reader is assumed to be familiar with linear algebra, real analysis and basic numerical methods. Audience: This volume will be of interest to mathematicians and engineers whose work involves numerical analysis, partial differential equations, mathematical modelling and industrial mathematics, or functional analysis.
Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicate that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing ¿ sampling, filtering, digital signal processing. Fourier analysis in Hilbert spaces is the focus of the third part, and the last part provides an introduction to wavelet analysis, time-frequency issues, and multiresolution analysis. An appendix provides the necessary background on Lebesgue integrals.
Wireless Power Transfer for e-Mobility: Fundamentals and Design Guidelines for Wireless Charging of Electric Vehicles provides a comprehensive resource for researchers and engineers engaged in the development of automotive WPT systems. The book opens with an overview of wireless technologies for power transfer and their evolution over time, then focusing on the application of this technology to electric mobility highlighting its importance in terms of impact and perspectives on the development of sustainable transport and autonomous driving. Chapters discuss the fundamentals of electromagnetic field in WPT systems and the circuit modelling. In addition, they examine core current electric vehicle systems and present-day automotive WPT standards. Design techniques of magnetic couplers, including compensation networks are explored in-depth alongside power electronics techniques for automotive WPT systems. Both stationary and dynamic automotive WPT systems are rigorously assessed. Finally, the problems of electromagnetic compatibility and electromagnetic field safety are described with particular attention to shielding techniques for the mitigation of magnetic field emissions. Addressing essential knowledge from foundational to advanced levels, Wireless Power Transfer for e-Mobility provides practical guidance to engineers and researchers developing the future of electric mobility.
Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.
Adaptive techniques play a key role in modern wireless communication systems. The concept of adaptation is emphasized in the "Adaptation in Wireless Communications Series" through a unified framework across all layers of the wireless protocol stack ranging from the physical layer to the application layer, and from cellular systems to next-generation wireless networks. This specific volume, Adaptive Signal Processing in Wireless Communications is devoted to adaptation in the physical layer. It gives an in-depth survey of adaptive signal processing techniques used in current and future generations of wireless communication systems. Featuring the work of leading international experts, it covers adaptive channel modeling, identification and equalization, adaptive modulation and coding, adaptive multiple-input-multiple-output (MIMO) systems, and cooperative diversity. It also addresses other important aspects of adaptation in wireless communications such as hardware implementation, reconfigurable processing, and cognitive radio. A second volume in the series, "Adaptation and Cross-layer Design in Wireless Networks(cat no.46039) "is devoted to adaptation in the data link, network, and application layers.
"European industry has already developed successful standards in the past, and I am very con?dent that on the basis of DVB-H, Mobile TV services can developtheeconomiesofscaletheyneedfortake-upacrossEuropeandaround the world," With these words of EU's Telecom Commissioner Viviane Reding, DVB-H is destined to be a dominating mobile TV technology in Europe and even in the world. I was ?rst getting in touch with the DVB technology when I was doing my PhD research in Brunel University in UK in 2002. At that time DVB-T was already a mature and widely used digital broadcast technology and anyone could easily buy a DVB-T receiver in the market to try the digital broadcast signals that have been already broadcasted in UK since 1998. Then the DVB technology world changed dramatically. As a more ?exible and robust terr- trial broadcast system targeting handsets, DVB-H was developed based on DVB-T. In 2003 the DVB-H community were continuously working to ?n- ize the standard. Finally in November 2004 DVB-H was adopted as an ETSI standard EN 302 304. I was lucky to see all these changes when I was doing my PhD research in DVB technology. And I was very proud to be involved in the di?erent DVB-H research projects since the beginning of the DVB-H standard development stage. I was also lucky enough that I am one of the ?rst persons who ?nished PhD degree by focusing on DVB-H research.
To advantageously plan and design for the explosive near-future increase in the number of unmanned aerial vehicles (UAVs) and their demanding applications, integration of UAVs into cellular communication systems has seen increasing interest. This book provides a timely and comprehensive overview of the recent research efforts and results of unmanned aerial vehicles (UAVs)-integrated cellular network communications. The aim of the book is to provide a comprehensive coverage of the potential applications, networking architectures, latest research findings and key enabling technologies, experimental measurement results, as well as up-to-date industry standardizations for UAV communications in cellular systems, including the existing LTE as well as the future 5G-and-beyond systems.
Rapid developments in technology have led to enhanced electronic systems and applications. When utilized correctly, these can have significant impacts on communication and computer systems. Transport of Information-Carriers in Semiconductors and Nanodevices is an innovative source of academic material on transport modelling in semiconductor material and nanoscale devices. Including a range of perspectives on relevant topics such as charge carriers, semiclassical transport theory, and organic semiconductors, this is an ideal publication for engineers, researchers, academics, professionals, and practitioners interested in emerging developments on transport equations that govern information carriers.
"Electronic and Electrical Servicing - Level 3" follows on from the
Level 2 book and covers the more advanced electronics and
electrical principles required by service engineers servicing home
entertainment equipment such as TVs, CD and DVD machines, as well
as commercial equipment including PCs.
A comprehensive survey of Open RAN technology and its ecosystem In Open RAN: The Definitive Guide, a team of distinguished industry leaders deliver an authoritative guide to all four principles of the Open RAN vision: openness, virtualization, intelligence, and interoperability. Written by the industry experts currently defining the specifications, building the systems, and testing and deploying the networks, the book covers O-RAN architecture, the fronthaul interface, security, cloudification, virtualization, intelligence, certification, badging, and standardization. This critical reference on Open RAN explains how and why an open and disaggregated, intelligent, and fully virtualized network is the way networks should be designed and deployed moving forward. Readers will also find: A thorough introduction to contributions from key industry players, including AT&T, Telefonica, Mavenir, VMWare, Google and VIAVI Comprehensive explorations of Open X-Haul transport networks and other unique 5G capabilities Practical discussions of the four pillars of O-RAN architecture: openness, virtualization, intelligence, and interoperability Comprehensive treatments of how smaller vendors can introduce their own services and customize the network Perfect for executives, engineers, product managers, and marketing professionals in the telecom industry, Open RAN: The Definitive Guide will also benefit graduate students, researchers, and engineers in government agencies with involvement in the wireless and telecom industries.
The hallmark feature of Engineering Circuit Analysis is its focus on the student. This text is written so students may teach the science of circuit analysis to themselves. Terms are clearly defined, basic material appears toward the beginning of each chapter and is explained carefully and in detail, and numerical examples are used to introduce and suggest general results. Simple practice problems appear throughout each chapter, while more difficult problems appear at the end of chapters. The new edition of Engineering Circuit Analysis is also available in McGraw Hill Connect, featuring: SmartBook 2.0, Adaptive STEM Prep Modules, Application-Based Activities, a curated question bank, Proctorio, and more!
Recently there has been intense research activity on the subject of wavelet/subband theory and application. Experts in such diverse fields as mathematics, physics, electrical engineering and image processing have provided original and pioneering works and results. But this diversity, while rich and productive, has lead to a sense of fragmentation, especially to those new to the field, and nonspecialists, trying to understand the connections between the different aspects of wavelet and subband theory. The book is designed to present an understanding of wavelets and their development from a continuous-domain transformation to a frame representation and finally to multiresolution analysis tools such as subband decomposition. The book presents a theoretical understanding of the subject that is intertwined with practical examples and practical applications of wavelets in ultrasonic and biomedical applications. There is special emphasis on applications in communications and compression as well as image processing. Topics and Features: * Provides an understanding of the link between continuous wavelet transform, the fast wavelet transform and subband decomposition. * Algorithms and numerical examples are implemented in Matlab. * The design of wavelet bases, and how to implement the transform both in hardware and software is discussed in detail. * Covers the fundamentals and the developments of the links between areas such as time-frequency analysis, digital signal processing, image processing and Fourier and wavelet transform, both continuous and discrete. Extended mathematical treatment and numerous examples, with particular emphasis to the transition from thecontinuous domain to multiresolution and subband. The book is an essential text/reference for graduates, researchers, and professionals in electrical engineering, communications engineering and computer engineering. Practitioners and professionals engaged in signal processing, wavelets and Fourier analysis will find the book a useful resource and comprehensive guide.
INTRODUCTION TO SONAR TRANSDUCER DESIGN A comprehensive introduction to sonar transducer design, complete with real world examples, step-by-step instruction, and detailed mathematical review In Introduction to Sonar Transducer Design, renowned sensor engineer Dr. John C. Cochran delivers an instructive and comprehensive exploration of the foundations of sonar transducer design perfect for beginning and experienced professional transducer designers. The book offers a detailed mathematical review of the subject, as well as fulsome design examples. Beginning with a description of acoustic wave propagation, along with a review of radiation from a variety of sources, the book moves on to discuss equivalent circuit models that explain wave propagation in solids and liquids. The book reviews examples of projectors and hydrophones accompanied by complete mathematical solutions. All included math is developed from first principles to a final solution using an intuitive, step-by-step approach. Introduction to Sonar Transducer Design offers professionals and students the analytical tools and assumptions required for start-to-finish transducer design. It also provides: A thorough introduction to acoustic waves and radiation, including small signals, linear acoustics, the equations of continuity, motion, the wave equation in a fluid media, and integral formulations Comprehensive explorations of the elements of transduction, including various forms of impedance, and mechanical and acoustical equivalent circuits, as well as their combination Practical discussions of waves in solid media, including homogeneous, isotropic, elastic, and solid media, piezoelectricity and piezoelectric ceramic materials, and waves in non-homogeneous, piezoelectric media In-depth examinations of sonar projectors and sonar hydrophones, including the elements and tools of sonar projector and sonar hydrophone design, as well as their applications Perfect for sonar system engineers, particularly those involved in defense, Introduction to Sonar Transducer Design will also earn a place in the libraries of acoustic, audio, underwater communication, and naval engineers.
Communication Technology and Social Change is a distinctive collection that provides current theoretical, empirical, and legal analyses for a broader understanding of the dynamic influences of communication technology on social change. With a distinguished panel of contributors, the volume presents a systematic discussion of the role communication technology plays in shaping social, political, and economic influences in society within specific domains and settings. Its integrated focus expands and complements the scope of existing literature on this subject. Each chapter is organized around a specific structure, covering: *Background-offering an introduction of relevant communication technology that outlines its technical capabilities, diffusion, and uses; *Theory-featuring a discussion of relevant theories used to study the social impacts of the communication technology in question; *Empirical Findings-providing an analysis of recent academic and relevant practical work that explains the impact of the communication technology on social change; and *Social Change Implications-proposing a summary of the real world implications for social change that stems from synthesizing the relevant theories and empirical findings presented throughout the book. Communication Technology and Social Change will serve scholars, researchers, upper-division undergraduate students, and graduate students examining the relationship between communication and technology and its implications for society.
Electronics: Principles and Applications, 10e, requires no prior knowledge of electrical theory and principles. This text has been written at a level that allows students with limited math and reading skills to gain a clear understanding, and provides the entry-level knowledge and skills for a wide range of occupations within electricity and electronics. The text also offers a wildly popular Experiments Manual. The new edition of Electronics: Principles and Applications, is also in McGraw Hill Connect, featuring SmartBook 2.0, Adaptive Learning Assignments, and more! |
![]() ![]() You may like...
Artificial Intelligence in Design 1994
John S. Gero, Fay Sudweeks
Hardcover
R2,645
Discovery Miles 26 450
Creo Parametric 9.0 Black Book (Colored)
Gaurav Verma, Matt Weber
Hardcover
R2,326
Discovery Miles 23 260
|