![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > General
>IoT-Enabled Smart Healthcare Systems, Services and Applications Explore the latest healthcare applications of cutting-edge technologies In IoT-Enabled Smart Healthcare Systems, Services and Applications, an accomplished team of researchers delivers an insightful and comprehensive exploration of the roles played by cutting-edge technologies in modern healthcare delivery. The distinguished editors have included resources from a diverse array of learned experts in the field that combine to create a broad examination of a rapidly developing field. With a particular focus on Internet of Things (IoT) technologies, readers will discover how new technologies are impacting healthcare applications from remote monitoring systems to entire healthcare delivery methodologies. After an introduction to the role of emerging technologies in smart health care, this volume includes treatments of ICN-Fog computing, edge computing, security and privacy, IoT architecture, vehicular ad-hoc networks (VANETs), and patient surveillance systems, all in the context of healthcare delivery. Readers will also find: A thorough introduction to ICN-Fog computing for IoT based healthcare, including its architecture and challenges Comprehensive explorations of Internet of Things enabled software defined networking for edge computing in healthcare Practical discussions of a review of e-healthcare systems in India and Thailand, as well as the security and privacy issues that arise through the use of smart healthcare systems using Internet of Things devices In-depth examinations of the architecture and applications of an Internet of Things based healthcare system Perfect for healthcare practitioners and allied health professionals, hospital administrators, and technology professionals, IoT-Enabled Smart Healthcare Systems, Services and Applications is an indispensable addition to the libraries of healthcare regulators and policymakers seeking a one-stop resource that explains cutting-edge technologies in modern healthcare.
Principles of Laser Materials Processing Authoritative resource providing state-of-the-art coverage in the field of laser materials processing, supported with supplementary learning materials Principles of Laser Materials Processing goes over the most recent advancements and applications in laser materials processing, with the second edition providing a welcome update to the successful first edition through updated content on the important fields within laser materials processing. The text includes solved example problems and problem sets suitable for the readers' further understanding of the technology explained. Split into three parts, the text first introduces basic concepts of lasers, including the characteristics of lasers and the design of their components, to aid readers in their initial understanding of the technology. The text then reviews the engineering concepts that are needed to analyze the different processes. Finally, it delves into the background of laser materials and provides a state-of-the-art compilation of material in the major application areas, such as laser cutting and drilling, welding, surface modification, and forming, among many others. It also presents information on laser safety to prepare the reader for working in the industry sector and provide practicing engineers the updates needed to work safely and effectively. In Principles of Laser Materials Processing, readers can expect to find specific information on: Laser generation principles, including basic atomic structure, atomic transitions, population distribution, absorption, and spontaneous emission Optical resonators, including standing waves in a rectangular cavity, planar resonators, beam modes, line selection, confocal resonators, and concentric resonators Laser pumping, including optical pumping, arc/flash lamp pumping, energy distribution in the active medium, and electrical pumping Broadening mechanisms, including line-shape functions, homogeneous broadening such as natural and collision, and inhomogeneous broadening Principles of Laser Materials Processing is highly suitable for senior undergraduate and graduate students studying laser processing, and non-traditional manufacturing processes; it is also aimed at researchers to provide additional information to be used in research projects that are to be undertaken within the technology field.
Voltage Stability in Electrical Power Systems Explore critical topics and the latest research in voltage stability in electric power systems In Voltage Stability in Electrical Power Systems: Concepts, Assessment, and Methods for Improvement, three distinguished electrical engineers deliver a comprehensive discussion of voltage stability analysis in electrical power systems. The book discusses the concept of voltage stability, effective factors and devices, and suitable system modeling, offering readers an authoritative overview of the subject and strategies to prevent instability in power systems. The authors explore critical topics such as load and load tap changer (LTC) transformer modeling and the impact of distributed generation and transmission-distribution interactions on voltage stability. They also present practical methods to improve voltage stability. Readers will also find: Thorough introductions to voltage stability, effective factors and devices, and suitable systems modeling Comprehensive explorations of voltage stability assessment methods, including the continuation power flow methods and PV-curve fitting In-depth explorations of methods of improving voltage stability, including preventive and corrective methods Fulsome presentations of measurement-based indices and model-based indices of stability assessment Perfect for engineers and other professionals designing electric power systems, Voltage Stability in Electrical Power Systems: Concepts, Assessment, and Methods for Improvement will also earn a place in the libraries of graduate and senior undergraduate students with an interest in power systems.
Discover an up-to-date exploration of Embedded and Fan-Out Waver and Panel Level technologies In Embedded and Fan-Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces: High Performance Compute and System-in-Package, a team of accomplished semiconductor experts delivers an in-depth treatment of various fan-out and embedded die approaches. The book begins with a market analysis of the latest technology trends in Fan-Out and Wafer Level Packaging before moving on to a cost analysis of these solutions. The contributors discuss the new package types for advanced application spaces being created by companies like TSMC, Deca Technologies, and ASE Group. Finally, emerging technologies from academia are explored. Embedded and Fan-Out Wafer and Panel Level Packaging Technologies for Advanced Application Spaces is an indispensable resource for microelectronic package engineers, managers, and decision makers working with OEMs and IDMs. It is also a must-read for professors and graduate students working in microelectronics packaging research.
Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
COMPUTER MODELS OF PROCESS DYNAMICS Comprehensive overview of techniques for describing physical phenomena by means of computer models that are determined by mathematical analysis Computer Models of Process Dynamics covers everything required to do computer based mathematical modeling of dynamic systems, including an introduction to a scientific language, its use to program essential operations, and methods to approximate the integration of continuous signals. From a practical standpoint, readers will learn how to build computer models that simulate differential equations. They are also shown how to model physical objects of increasing complexity, where the most complex objects are simulated by finite element models, and how to follow a formal procedure in order to build a valid computer model. To aid in reader comprehension, a series of case studies is presented that covers myriad different topics to provide a view of the challenges that fall within this discipline. The book concludes with a discussion of how computer models are used in an engineering project where the readers would operate in a team environment. Other topics covered in Computer Models of Process Dynamics include: Computer hardware and software, covering algebraic expressions, math functions, computation loops, decision-making, graphics, and user-defined functions Creative thinking and scientific theories, covering the Ancients, the Renaissance, Galileo, Newton, electricity and magnetism, and newer sciences Uncertainty and softer science, covering random number generators, statistical analysis of data, the method of least squares, and state/velocity estimators Flight simulators, covering the motion of an aircraft, the equations of motion, short period pitching motion, and phugoid motion Established engineers and programmers, along with students and academics in related programs of study, can harness the comprehensive information in Computer Models of Process Dynamics to gain mastery over the subject and be ready to use their knowledge in many practical applications in the field.
Advances in Semiconductor Technologies Discover the broad sweep of semiconductor technologies in this uniquely curated resource Semiconductor technologies and innovations have been the backbone of numerous different fields: electronics, online commerce, the information and communication industry, and the defense industry. For over fifty years, silicon technology and CMOS scaling have been the central focus and primary driver of innovation in the semiconductor industry. Traditional CMOS scaling has approached some fundamental limits, and as a result, the pace of scientific research and discovery for novel semiconductor technologies is increasing with a focus on novel materials, devices, designs, architectures, and computer paradigms. In particular, new computing paradigms and systems--such as quantum computing, artificial intelligence, and Internet of Things--have the potential to unlock unprecedented power and application space. Advances in Semiconductor Technologies provides a comprehensive overview of selected semiconductor technologies and the most up-to-date research topics, looking in particular at mainstream developments in current industry research and development, from emerging materials and devices, to new computing paradigms and applications. This full-coverage volume gives the reader valuable insights into state-of-the-art advances currently being fabricated, a wide range of novel applications currently under investigation, and a glance into the future with emerging technologies in development. Advances in Semiconductor Technologies readers will also find: A comprehensive approach that ensures a thorough understanding of state-of-the-art technologies currently being fabricated Treatments on all aspects of semiconductor technologies, including materials, devices, manufacturing, modeling, design, architecture, and applications Articles written by an impressive team of international academics and industry insiders that provide unique insights into a wide range of topics Advances in Semiconductor Technologies is a useful, time-saving reference for electrical engineers working in industry and research, who are looking to stay abreast of rapidly advancing developments in semiconductor electronics, as well as academics in the field and government policy advisors.
Nanobiotechnology for Bioremediation: Fundamentals and Mechanisms provides detailed information on nanomaterial applications for the bioremediation of a heavily contaminated environment. Relevant information is provided on the application of nanofibers, nanoscale zero-valent iron (nZVI), nanocomposites, carbon nanotubes for rejuvenation of a heavy environment from different pollutants, such as heavy metals, chlorinated compounds, organic compounds, polyaromatic hydrocarbon, and hydrocarbons. The book also explores the application of nanomaterials as a sustainable green solution that help prevent various high levels of contamination in the environment. Each chapter addresses the application of nanomaterials as a sustainable tool for managing innumerable environmental challenges. This helps readers translate their research findings into sustainable innovations to resolve their immediate environmental challenges.
Polymers in Organic Electronics: Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems provides readers with vital data, guidelines, and techniques for optimally designing organic electronic systems using novel polymers. The book classifies polymer families, types, complexes, composites, nanocomposites, compounds, and small molecules while also providing an introduction to the fundamental principles of polymers and electronics. Features information on concepts and optimized types of electronics and a classification system of electronic polymers, including piezoelectric and pyroelectric, optoelectronic, mechatronic, organic electronic complexes, and more. The book is designed to help readers select the optimized material for structuring their organic electronic system. Chapters discuss the most common properties of electronic polymers, methods of optimization, and polymeric-structured printed circuit boards. The polymeric structures of optoelectronics and photonics are covered and the book concludes with a chapter emphasizing the importance of polymeric structures for packaging of electronic devices.
Dynamic System Modeling & Analysis with MATLAB & Python A robust introduction to the advanced programming techniques and skills needed for control engineering In Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers, accomplished control engineer Dr. Jongrae Kim delivers an insightful and concise introduction to the advanced programming skills required by control engineers. The book discusses dynamic systems used by satellites, aircraft, autonomous robots, and biomolecular networks. Throughout the text, MATLAB and Python are used to consider various dynamic modeling theories and examples. The author covers a range of control topics, including attitude dynamics, attitude kinematics, autonomous vehicles, systems biology, optimal estimation, robustness analysis, and stochastic system. An accompanying website includes a solutions manual as well as MATLAB and Python example code. Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers provides readers with a sound starting point to learning programming in the engineering or biology domains. It also offers: A thorough introduction to attitude estimation and control, including attitude kinematics and sensors and extended Kalman filters for attitude estimation Practical discussions of autonomous vehicles mission planning, including unmanned aerial vehicle path planning and moving target tracking Comprehensive explorations of biological network modeling, including bio-molecular networks and stochastic modeling In-depth examinations of control algorithms using biomolecular networks, including implementation Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers is an indispensable resource for advanced undergraduate and graduate students seeking practical programming instruction for dynamic system modeling and analysis using control theory.
This Expert Guide gives you the knowledge, methods and techniques to develop and manage embedded systems successfully. It shows that teamwork, development procedures, and program management require unique and wide ranging skills to develop a system, skills that most people can attain with persistence and effort. With this book you will: Understand the various business aspects of a project from budgets and schedules through contracts and market studies Understand the place and timing for simulations, bench tests, and prototypes, and understand the differences between various formal methods such as FMECA, FTA, ETA, reliability, hazard analysis, and risk analysis Learn general design concerns such as the user interface, interfaces and partitioning, DFM, DFA, DFT, tradeoffs such as hardware versus software, buy versus build, processor choices, and algorithm choices, acquisition concerns, and interactions and comparisons between electronics, functions, software, mechanics, materials, security, maintenance, and support
Cerium Oxide (CeO2): Synthesis, Properties and Applications provides an updated and comprehensive account of the research in the field of cerium oxide based materials. The book is divided into three main blocks that deal with its properties, synthesis and applications. Special attention is devoted to the growing number of applications of ceria based materials, including their usage in industrial and environmental catalysis and photocatalysis, energy production and storage, sensors, cosmetics, radioprotection, glass technology, pigments, stainless steel and toxicology. A brief historical introduction gives users background, and a final chapter addresses future perspectives and outlooks to stimulate future research. The book is intended for a wide audience, including students, academics and industrial researchers working in materials science, chemistry and physics.
PROCESSING OF CERAMICS A firsthand account of the "transparent ceramics revolution" from one of the pioneers in the field Processing of Ceramics: Breakthroughs in Optical Materials is an in-depth survey of the breakthrough research and development of transparent ceramics, covering historical background, theory, manufacturing processes, and applications. Written by an internationally-recognized leader in the technology, this authoritative volume describes advances in optical grade ceramics over the past three decades--from the author's first demonstration of laser ceramics in Japan in 1991 to new applications of transparent ceramics such as ceramic jewels, wireless heating elements, and mobile device displays. The author provides numerous development examples of laser ceramics, crystal and ceramic scintillators, magneto-optic transparent ceramics, optical ceramic phosphors for solid state lighting, and more. Detailed chapters cover topics such as the technical problems of conventional translucent and transparent ceramics, the characteristics of scintillation materials, single crystal and ceramic scintillator fabrication and optimization, and solid-state crystal growth (SSCG) methods for single crystal ceramics. Processing of Ceramics: Outlines the author's 30 years of work in the area of transparent ceramics Provides a detailed history of the world's first ceramic laser development Demonstrates how laser oscillation using ceramic materials match or surpass high-quality single crystals Describes how innovative polycrystalline ceramics have transformed optical material development Includes extensive references, chapter introductions and summaries, and numerous graphs, tables, diagrams, and color images Processing of Ceramics is an invaluable resource for researchers, materials scientists, engineers, and other professionals across academic and industrial fields involved in the development and application of optical grade ceramics.
Model-Based Reinforcement Learning Explore a comprehensive and practical approach to reinforcement learning Reinforcement learning is an essential paradigm of machine learning, wherein an intelligent agent performs actions that ensure optimal behavior from devices. While this paradigm of machine learning has gained tremendous success and popularity in recent years, previous scholarship has focused either on theory--optimal control and dynamic programming - or on algorithms--most of which are simulation-based. Model-Based Reinforcement Learning provides a model-based framework to bridge these two aspects, thereby creating a holistic treatment of the topic of model-based online learning control. In doing so, the authors seek to develop a model-based framework for data-driven control that bridges the topics of systems identification from data, model-based reinforcement learning, and optimal control, as well as the applications of each. This new technique for assessing classical results will allow for a more efficient reinforcement learning system. At its heart, this book is focused on providing an end-to-end framework--from design to application--of a more tractable model-based reinforcement learning technique. Model-Based Reinforcement Learning readers will also find: A useful textbook to use in graduate courses on data-driven and learning-based control that emphasizes modeling and control of dynamical systems from data Detailed comparisons of the impact of different techniques, such as basic linear quadratic controller, learning-based model predictive control, model-free reinforcement learning, and structured online learning Applications and case studies on ground vehicles with nonholonomic dynamics and another on quadrator helicopters An online, Python-based toolbox that accompanies the contents covered in the book, as well as the necessary code and data Model-Based Reinforcement Learning is a useful reference for senior undergraduate students, graduate students, research assistants, professors, process control engineers, and roboticists.
Introduce yourself to the foundations of fuzzy logic with this easy-to-use guide Many fields studied are defined by imprecise information or high degrees of uncertainty. When this uncertainty derives from randomness, traditional probabilistic statistical methods are adequate to address it; more everyday forms of vagueness and imprecision, however, require the toolkit associated with 'fuzzy sets' and 'fuzzy logic'. Engineering and mathematical fields related to artificial intelligence, operations research and decision theory are now strongly driven by fuzzy set theory. Mathematical Foundation of Fuzzy Sets introduces readers to the theoretical background and practical techniques required to apply fuzzy logic to engineering and mathematical problems. It introduces the mathematical foundations of fuzzy sets as well as the current cutting edge of fuzzy-set operations and arithmetic, offering a rounded introduction to this essential field of applied mathematics. The result can be used either as a textbook or as an invaluable reference for working researchers and professionals. Mathematical Foundation of Fuzzy Sets offers the reader: Detailed coverage of set operations, fuzzification of crisp operations, and more Logical structure in which each chapter builds carefully on previous results Intuitive structure, divided into 'basic' and 'advanced' sections, to facilitate use in one- or two-semester courses Mathematical Foundation of Fuzzy Sets is essential for graduate students and academics in engineering and applied mathematics, particularly those doing work in artificial intelligence, decision theory, operations research, and related fields.
Gallium Oxide: Technology, Devices and Applications discusses the wide bandgap semiconductor and its promising applications in power electronics, solar blind UV detectors, and in extreme environment electronics. It also covers the fundamental science of gallium oxide, providing an in-depth look at the most relevant properties of this materials system. High quality bulk Ga2O3 is now commercially available from several sources and n-type epi structures are also coming onto the market. As researchers are focused on creating new complex structures, the book addresses the latest processing and synthesis methods. Chapters are designed to give readers a complete picture of the Ga2O3 field and the area of devices based on Ga2O3, from their theoretical simulation, to fabrication and application.
A cutting-edge, advanced level, exploration of optical sensing application in power transformers Optical Sensing in Power Transformers is filled with the critical information and knowledge on the optical techniques applied in power transformers, which are important and expensive components in the electric power system. Effective monitoring of systems has proven to decrease the transformer lifecycle cost and increase a high level of availability and reliability. It is commonly held that optical sensing techniques will play an increasingly significant role in online monitoring of power transformers. In this comprehensive text, the authors--noted experts on the topic--present a scholarly review of the various cutting-edge optical principles and methodologies adopted for online monitoring of power transformers. Grounded in the authors' extensive research, the book examines optical techniques and high-voltage equipment testing and provides the foundation for further application, prototype, and manufacturing. The book explores the principles, installation, operation, condition detection, monitoring, and fault diagnosis of power transformers. This important text: Provides a current exploration of optical sensing application in power transformers Examines the critical balance and pros and cons of cost and quality of various optical condition monitoring techniques Presents a wide selection of techniques with appropriate technical background Extends the vision of condition monitoring testing and analysis Treats condition monitoring testing and analysis tools together in a coherent framework Written for researchers, technical research and development personnel, manufacturers, and frontline engineers, Optical Sensing in Power Transformers offers an up-to-date review of the most recent developments of optical sensing application in power transformers.
Novel Magnetic Nanostructures: Unique Properties and Applications reviews the synthesis, design, characterization and unique properties of emerging nanostructured magnetic materials. It discusses the most promising and relevant applications, including data storage, spintronics and biomedical applications. Properties investigated include electronic, self-assembling, multifunctional, and magnetic properties, along with magnetic phenomena. Structures range from magnetic nanoclusters, nanoparticles, and nanowires, to multilayers and self-assembling nanosystems. This book provides a better understanding of the static and dynamic magnetism in new nanostructures for important applications.
CYBER-PHYSICAL DISTRIBUTED SYSTEMS Gather detailed knowledge and insights into cyber-physical systems behaviors from a cutting-edge reference written by leading voices in the field In Cyber-Physical Distributed Systems: Modeling, Reliability Analysis and Applications, distinguished researchers and authors Drs. Huadong Mo, Giovanni Sansavini, and Min Xie deliver a detailed exploration of the modeling and reliability analysis of cyber physical systems through applications in infrastructure and energy and power systems. The book focuses on the integrated modeling of systems that bring together physical and cyber elements and analyzing their stochastic behaviors and reliability with a view to controlling and managing them. The book offers a comprehensive treatment on the aging process and corresponding online maintenance, network degradation, and cyber-attacks occurring in cyber-physical systems. The authors include many illustrative examples and case studies based on real-world systems and offer readers a rich set of references for further research and study. Cyber-Physical Distributed Systems covers recent advances in combinatorial models and algorithms for cyber-physical systems modeling and analysis. The book also includes: A general introduction to traditional physical/cyber systems, and the challenges, research trends, and opportunities for real cyber-physical systems applications that general readers will find interesting and useful Discussions of general modeling, assessment, verification, and optimization of industrial cyber-physical systems Explorations of stability analysis and enhancement of cyber-physical systems, including the integration of physical systems and open communication networks A detailed treatment of a system-of-systems framework for the reliability analysis and optimal maintenance of distributed systems with aging components Perfect for undergraduate and graduate students in computer science, electrical engineering, cyber security, industrial and system engineering departments, Cyber-Physical Distributed Systems will also earn a place on the bookshelves of students taking courses related to reliability, risk and control engineering from a system perspective. Reliability, safety and industrial control professionals will also benefit greatly from this book.
Defect Induced Magnetism in Oxide Semiconductors provides an overview on the latest advances of defect engineering to create new magnetic materials and enable new technological applications. Sections introduce the mechanisms, behavior and theory of magnetism in oxide semiconductors and review methods of inducing magnetism in these materials. Then, strategies such as pulsed laser deposition and RF sputtering to grow oxide nanostructured materials with induced magnetism are discussed. This is followed by a review of the most relevant post-deposition methods to induce magnetism in oxide semiconductors, including annealing, ion irradiation, and ion implantation. Examples of defect induced magnetism in oxide semiconductors are then provided, along with selected applications. This title will be suitable reference for researchers in academia and practitioners in research and development in industry working in the disciplines of materials science and engineering.
Bioelectromagnetics in Healthcare: Advanced sensing and communication applications is a collection of twelve invited chapters from international experts from the UK, Japan, Switzerland, and the United States of America. The book forms a cohesive architecture that covers the state-of-the-art in terms of sensing and communications with relevance to bioelectromagnetics in healthcare. The book provides a valuable insight into the current and future possibilities where electromagnetics engineers will need to keep improving radiofrequency device performance in terms of better efficiency, greater sensitivity, reduced unintended power absorption by the body, smaller size, and lower power consumption. Topics covered include dielectric measurements, dosimetry for bioelectromagnetics, phantom recipes for implanted and wearable antenna applications, antennas for implants, electromagnetic coupling in biological media, electromagnetic resonators and metamaterials-based structures for chemical and biological sensing in body-centric wireless applications, bone fracture monitoring using implanted antennas, wearable antennas for sensing, epidermal and conformal electronics, radar for healthcare technology, therapeutic applications of electromagnetic waves, and optoelectronic sensing of physiological monitoring. The book is aimed at electromagnetics engineers and advanced students in electromagnetics working on healthcare and medical applications.
As a society today, we are so dependent on systems-of-systems that any malfunction has devastating consequences, both human and financial. Their technical design, functional complexity and numerous interfaces justify a significant investment in testing in order to limit anomalies and malfunctions. Based on more than 40 years of practice, this book goes beyond the simple testing of an application - already extensively covered by other authors - to focus on methodologies, techniques, continuous improvement processes, load estimates, metrics and reporting, which are illustrated by a case study. It also discusses several challenges for the near future. Pragmatic and clear, this book displays many examples and references that will help you improve the quality of your systemsof-systems efficiently and effectively and lead you to identify the impact of upstream decisions and their consequences. Advanced Testing of Systems-of-Systems 2 deals with the practical implementation and use of the techniques and methodologies proposed in the first volume.
GAS INSULATED SUBSTATIONS An essential reference guide to gas-insulated substations The second edition of Gas Insulated Substations (GIS) is an all-inclusive reference guide to gas insulated substations (GIS) and its advanced technologies. Updated to the latest technical developments and applications, the guide covers basic physics of gas insulated systems, SF6 insulating gas and its alternatives, safety aspects and factors to choose GIS. GIS technology, its modular structure, control and monitoring systems, testing, installation rules and guidelines for operation, specification, and maintenance. Detailed information on various types for GIS, with 14 reference project explanations and three extensive case studies give information for the best solutions of practical applications. Special solutions using mobile substations concepts, mixed technology switchgear (MTS) with air and gas insulated technology, underground substations, and the use of special GIS substation buildings e.g., shopping centers, parking lots, city parks, business complexes' or subway stations are explained. Future developments of GIS technology are shown for the next steps in alternatives to SF6, low power instrument transformers, and digitalization of substations. A new chapter explains advanced technologies applied to GIS projects which cover the following; environmental issues for the substation permission process, insulation coordination studies for the network requirements including very fast transients, project scope development, risk-based asset management, health and safety impact, electromagnetic fields, SF6 decomposition byproducts and condition assessment. Disruptive development steps in gas insulated substations technologies are also covered in this second edition. Vacuum breaking and switching technology for rated voltages of up to 500 kV is explained in detail with its physical background. Principle function and possible implementation of low power instrument transformers (LPIT) are explained and examples of applications are given. The principles of digital twin for gas insulated substations (GIS) and gas insulated transmission lines (GIL) are explained in theory and project applications show the practical use and advantage. The wide and fast-growing technical field of offshore GIS applications for AC and DC is explained on many examples and gives information on special requirements when getting offshore. Theoretical requirements on DC gas insulated systems, methods of testing, prototype installation tests, modular design features, and advantages in applications are given. Finally, impact and advantages of digital substations using GIS are explained. Key features: Written by leading GIS experts involved in development and project applications Discusses practical and theoretical aspects Detailed material of GIS for new and experienced GIS users, and project planners Invaluable guide to practicing electrical, mechanical and civil engineers as well as third- and fourth-year electric power engineering students
There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these "game changers," governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.
Explore the diverse electrical engineering application of polymer composite materials with this in-depth collection edited by leaders in the field Polymer Composites for Electrical Engineering delivers a comprehensive exploration of the fundamental principles, state-of-the-art research, and future challenges of polymer composites. Written from the perspective of electrical engineering applications, like electrical and thermal energy storage, high temperature applications, fire retardance, power cables, electric stress control, and others, the book covers all major application branches of these widely used materials. Rather than focus on polymer composite materials themselves, the distinguished editors have chosen to collect contributions from industry leaders in the area of real and practical electrical engineering applications of polymer composites. The book s relevance will only increase as advanced polymer composites receive more attention and interest in the area of advanced electronic devices and electric power equipment. Unique amongst its peers, Polymer Composites for Electrical Engineering offers readers a collection of practical and insightful materials that will be of great interest to both academic and industrial audiences. Those resources include: A comprehensive discussion of glass fiber reinforced polymer composites for power equipment, including GIS, bushing, transformers, and more) Explorations of polymer composites for capacitors, outdoor insulation, electric stress control, power cable insulation, electrical and thermal energy storage, and high temperature applications A treatment of semi-conductive polymer composites for power cables In-depth analysis of fire-retardant polymer composites for electrical engineering An examination of polymer composite conductors Perfect for postgraduate students and researchers working in the fields of electrical, electronic, and polymer engineering, Polymer Composites for Electrical Engineering will also earn a place in the libraries of those working in the areas of composite materials, energy science and technology, and nanotechnology. |
You may like...
China Statistical Abstract 1990
State Statistical Bureau of the People's Republic of China
Hardcover
Theories For Decolonial Social Work…
Adrian Van Breda, Johannah Sekudu
Paperback
(1)R583 Discovery Miles 5 830
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Fundamentals of Social Research Methods
Claire Bless, Craig Higson-Smith, …
Paperback
|