![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > General
Artificial intelligence has been applied to many areas of science and technology, including the power and energy sector. Renewable energy in particular has experienced the tremendous positive impact of these developments. With the recent evolution of smart energy technologies, engineers and scientists working in this sector need an exhaustive source of current knowledge to effectively cater to the energy needs of citizens of developing countries. Computational Methodologies for Electrical and Electronics Engineers is a collection of innovative research that provides a complete insight and overview of the application of intelligent computational techniques in power and energy. Featuring research on a wide range of topics such as artificial neural networks, smart grids, and soft computing, this book is ideally designed for programmers, engineers, technicians, ecologists, entrepreneurs, researchers, academicians, and students.
Power System Monitoring and Control (PSMC) is becoming increasingly significant in the design, planning, and operation of modern electric power systems. In response to the existing challenge of integrating advanced metering, computation, communication, and control into appropriate levels of PSMC, Power System Monitoring and Control presents a comprehensive overview of the basic principles and key technologies for the monitoring, protection, and control of contemporary wide-area power systems. A variety of topical issues are addressed, including renewable energy sources, smart grids, wide-area stabilizing, coordinated voltage regulation, and angle oscillation damping as well as the advantages of phasor measurement units (PMUs) and global positioning systems (GPS) time signal. End-of-chapter problems and solutions, along with case studies, add depth and clarity to all topics. Timely and important, Power System Monitoring and Control is an invaluable resource for addressing the myriad of critical technical engineering considerations in modern electric power system design and operation. Provides an updated and comprehensive reference for researcher and engineers working on wide-area power system monitoring and control (PSMC) Links fundamental concepts of PSMC, advanced metering and control theory/techniques, and practical engineering considerations Covers PSMC problem understanding, design, practical aspects, and timely topics such as smart/microgrid control and coordinated voltage regulation and angle oscillation damping Incorporates authors experiences teaching and researching in various international locales including Japan, Thailand, Singapore, Malaysia, Iran, and Australia
Practical case-based guide illustrating the challenges and solutions of adopting IoT in both secure and hostile environments IoT for Defense and National Security covers topics on IoT security, architecture, robotics, sensing, policy, operations, and more, presenting the latest results from the U.S. Army's Internet of Battle Things and the U.S. Defense Department's premier IoT research initiative. The text discusses organizational challenges in converting defense industrial operations to IoT and summarizes policy challenges and recommendations for controlling government use of IoT in free societies. As a modern reference, this book covers multiple technologies in IoT solution deployment that include KepServerEX for edge connectivity to industrial protocols, AWS IoT Core for IoT data processing, Amazon S3 for scalable storage of IoT Data, and more. To aid in reader comprehension, the text uses case studies illustrating the challenges and solutions for using robotic devices in defense applications, plus case studies on using IoT for a defense industrial base. Witten by leading researchers and practitioners of IoT technology for defense and national security, IoT for Defense and National Security also includes information on: IoT resource allocation via mixed discrete/continuous optimization (monitoring existing resources and reallocating them in response to adversarial actions) Principles of robust learning and inference for Internet of Battlefield Things (IoBTs), covering methodologies to make machine learning models provably robust AI-enabled processing of environmental sounds in commercial and defense environments, such as detecting faults in industrial manufacturing Vulnerabilities in tactical IoT systems that come about due to the intrinsic nature of building networks using several devices and components For application engineers from security and defense-related companies and professors and students in military courses, IoT for Defense and National Security is a one-of-a-kind resource of the topic, providing expansive coverage of an important yet sensitive topic that is often shielded from the public due to classified or restricted distributions.
One of the most important key technologies for digital communication systems as well as storage media is coding theory. It provides a means to transmit information across time and space over noisy and unreliable communication channels. "Coding Theory: Algorithms, Architectures and Applications" provides a concise overview of channel coding theory and practice, as well as the accompanying signal processing architectures. The book is unique in presenting algorithms, architectures, and applications of coding theory in a unified framework. It covers the basics of coding theory before moving on to discuss algebraic linear block and cyclic codes, turbo codes and low density parity check codes and space-time codes. Coding Theory provides algorithms and architectures used for implementing coding and decoding strategies as well as coding schemes used in practice especially in communication systems. Feature of the book include: Unique presentation-like style for summarising main
aspects Sound theoretical approach to practical, relevant coding methodologies Covers standard coding schemes such as block and convolutional codes, coding schemes such as Turbo and LDPC codes, and space time codes currently in research, all covered in a common framework with respect to their applications. This book is ideal for postgraduate and undergraduate students of communication and information engineering, as well as computer science students. It will also be of use to engineers working in the industry who want to know more about the theoretical basics of coding theory and their application in currently relevant communicationsystems.
No microwave engineer's library is complete without this comprehensive 1100 page volume - widely considered to be the most useful microwave design reference ever published. The book details fundamental concepts, techniques, and data of general use in the design of a wide range of structures. In addition, specialized data is featured which makes it easy to work out practical, specific designs. Hundreds of equations, photos, and tables present the data you need at a glance. An indispensable engineering tool!
Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromagnetic theory. The book covers: basic definitions and equations (Maxwell's equations, boundary conditions, edge conditions, radiation conditions, radiation integral, scattering matrix and RCS); basic solution methods (separation of variables, Wiener-Hopf technique, Watson transformation, geometrical optics, geometrical theory of diffraction, physical optics, and physical theory of diffraction); solutions of Maxwell's equations for basic canonical geometries (a flat material interface, a circular cylinder, a sphere, a wedge, a half plane, a circular disc, an open-ended waveguide, and a cone) and their detailed analysis; explanations of fundamental scattering phenomena (edge and tip singularities, reflection from smoothly curved surfaces and flat non-metallic surfaces, edge-diffracted waves, creeping waves, multiply reflected / diffracted waves, surface waves, waveguide modes, tip-diffracted waves); a PTD-based approach for simulation of scattering and diffraction from generally shaped targets.
Text/reference spaning the theoretical concepts of reliability models and failure distributions, to GaAs microcircuit processing and test. Provides background on the development of quality assurance and verification procedures. Some of the new changes under development to cope with pressures brought
Real-time computing plays a vital role in ultra-reliable and safety-critical applications in fields as diverse as flight control, telecommunication systems, nuclear plant supervision and surgical operation monitoring. Providing a comprehensive overview, this book examines the most significant real-time scheduling policies in use today. Scheduling in Real-Time Systems presents:
Six years after its first edition, "Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Second Edition" provides and updated overview of the evolution of CT, the mathematical and physical aspects of the technology, and the fundamentals of image reconstruction algorithms. Given the high visibility and public awareness of the impact of x-ray radiation, the second edition features a new chapter on x-ray dose and presents different dose reduction techniques ranging from patient handling, optimal data acquisition, image reconstruction, and postprocess. Based on the advancements over the past six years, the second edition includes new sections on cone beam reconstruction algorithms, nonconventional helical acquisition and reconstruction, new reconstruction approaches, and dual-energy CT. Finally, new to this edition is a set of problems for each chapter, providing opportunities to enhance reader comprehension and practice the application of covered material.
In its original form, this widely acclaimed primer on the
fundamentals of quantized semiconductor structures was published as
an introductory chapter in Raymond Dingle's edited volume (24) of
Semiconductors and Semimetals. Having already been praised by
reviewers for its excellent coverage, this material is now
available in an updated and expanded "student edition." This work
promises to become a standard reference in the field. It covers the
basics of electronic states as well as the fundamentals of optical
interactions and quantum transport in two-dimensional quantized
systems. This revised student edition also includes entirely new
sections discussing applications and one-dimensional and
zero-dimensional systems.
LOW ELECTROMAGNETIC FIELD EXPOSURE WIRELESS DEVICES Comprehensive resource covering methods of designing energy efficient and low EMF wireless device techniques Supported with real case studies and recent advancements and laying the foundation for future advancements in the field, Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances describes both ways, i.e. hardware and software, in which the user-centric wireless communication devices can be designed to reduce the levels of EMF to limit the potential long-term effects of EMF on human health. The text covers state-of-the-art and advanced topics such as EMF exposure standards and rationale, EMF evaluation tools, radio resource allocation, energy conservation, energy harvesting, EMF-aware antenna designs, and MIMO, and highlights advancements in this exciting field to date. To aid reader comprehension, the text contains numerous tables, illustrations, and photographs. In Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances, readers can expect to find information on: Fundamentals and key practices, and mechanisms and assessment methods, of exposure to electromagnetic fields The role of the smartphone on the assessment of exposure from 5G and antenna design considerations and techniques for low SAR mobile handsets Numerical exposure assessments of communication systems at higher frequencies and age-dependent exposure estimation using numerical methods Reinforcement learning and device-to-device communication in minimizing EMF exposure and emission-aware uplink resource allocation scheme for non-orthogonal multiple access systems For wireless user equipment designers and hardware engineers, teachers in wireless communications, and postgraduate students in antennas for communication systems, Low Electromagnetic Field Exposure Wireless Devices: Fundamentals and Recent Advances is a must-have resource, covering an important topic that is expected to only grow in significance as future technological developments are made.
A comprehensive examination of advanced battery management technologies and practices in modern electric vehicles Policies surrounding energy sustainability and environmental impact have become of increasing interest to governments, industries, and the general public worldwide. Policies embracing strategies that reduce fossil fuel dependency and greenhouse gas emissions have driven the widespread adoption of electric vehicles (EVs), including hybrid electric vehicles (HEVs), pure electric vehicles (PEVs) and plug-in electric vehicles (PHEVs). Battery management systems (BMSs) are crucial components of such vehicles, protecting a battery system from operating outside its Safe Operating Area (SOA), monitoring its working conditions, calculating and reporting its states, and charging and balancing the battery system. Advanced Battery Management Technologies for Electric Vehicles is a compilation of contemporary model-based state estimation methods and battery charging and balancing techniques, providing readers with practical knowledge of both fundamental concepts and practical applications. This timely and highly-relevant text covers essential areas such as battery modeling and battery state of charge, energy, health and power estimation methods. Clear and accurate background information, relevant case studies, chapter summaries, and reference citations help readers to fully comprehend each topic in a practical context. Offers up-to-date coverage of modern battery management technology and practice Provides case studies of real-world engineering applications Guides readers from electric vehicle fundamentals to advanced battery management topics Includes chapter introductions and summaries, case studies, and color charts, graphs, and illustrations Suitable for advanced undergraduate and graduate coursework, Advanced Battery Management Technologies for Electric Vehicles is equally valuable as a reference for professional researchers and engineers.
Understanding the cost ramifications of design, manufacturing and life-cycle management decisions is of central importance to businesses associated with all types of electronic systems. Cost Analysis of Electronic Systems contains carefully developed models and theory that practicing engineers can directly apply to the modeling of costs for real products and systems. In addition, this book brings to light and models many contributions to life-cycle costs that practitioners are aware of but never had the tools or techniques to address quantitatively in the past.Cost Analysis of Electronic Systems melds elements of traditional engineering economics with manufacturing process and life-cycle cost management concepts to form a practical foundation for predicting the cost of electronic products and systems. Various manufacturing cost analysis methods are addressed including: process-flow, parametric, cost of ownership, and activity-based costing. The effects of learning curves, data uncertainty, test and rework processes, and defects are considered. Aspects of system sustainment and life-cycle cost modeling including reliability (warranty, burn-in), maintenance (sparing and availability), and obsolescence are treated. Finally, total cost of ownership of systems and return on investment are addressed.Real life design scenarios from integrated circuit fabrication, electronic systems assembly, substrate fabrication, and electronic systems managementare used as examples of the application of the cost estimation methods developed within the book.
This book uses a practical approach in the application of theoretical concepts to digital communications in the design of software defined radio modems. This book discusses the design, implementation and performance verification of waveforms and algorithms appropriate for digital data modulation and demodulation in modern communication systems. Using a building-block approach, the author provides an introductory to the advanced understanding of acquisition and data detection using source and executable simulation code to validate the communication system performance with respect to theory and design specifications. The author focuses on theoretical analysis, algorithm design, firmware and software designs and subsystem and system testing. This book treats system designs with a variety of channel characteristics from very low to optical frequencies. This book offers system analysis and subsystem implementation options for acquisition and data detection appropriate to the channel conditions and system specifications, and provides test methods for demonstrating system performance. This book also: * Outlines fundamental system requirements and related analysis that must be established prior to a detailed subsystem design * Includes many examples that highlight various analytical solutions and case studies that characterize various system performance measures * Discusses various aspects of atmospheric propagation using the spherical 4/3 effective earth radius model * Examines Ionospheric propagation and uses the Rayleigh fading channel to evaluate link performance using several robust waveform modulations * Contains end-of-chapter problems, allowing the reader to further engage with the text Digital Communications with Emphasis on Data Modems is a great resource for communication-system and digital signal processing engineers and students looking for in-depth theory as well as practical implementations.
The definitive reference work with comprehensive analysis and review of peer production Peer production is no longer the sole domain of small groups of technical or academic elites. The internet has enabled millions of people to collectively produce, revise, and distribute everything from computer operating systems and applications to encyclopedia articles and film and television databases. Today, peer production has branched out to include wireless networks, online currencies, biohacking, and peer-to-peer urbanism, amongst others. The Handbook of Peer Production outlines central concepts, examines current and emerging areas of application, and analyzes the forms and principles of cooperation that continue to impact multiple areas of production and sociality. Featuring contributions from an international team of experts in the field, this landmark work maps the origins and manifestations of peer production, discusses the factors and conditions that are enabling, advancing, and co-opting peer production, and considers its current impact and potential consequences for the social order. Detailed chapters address the governance, political economy, and cultures of peer production, user motivations, social rules and norms, the role of peer production in social change and activism, and much more. Filling a gap in available literature as the only extensive overview of peer production's modes of generating informational goods and services, this groundbreaking volume: Offers accessible, up-to-date information to both specialists and non-specialists across academia, industry, journalism, and public advocacy Includes interviews with leading practitioners discussing the future of peer production Discusses the history, traditions, key debates, and pioneers of peer production Explores technologies for peer production, openness and licensing, peer learning, open design and manufacturing, and free and open-source software The Handbook of Peer Production is an indispensable resource for students, instructors, researchers, and professionals working in fields including communication studies, science and technology studies, sociology, and management studies, as well as those interested in the network information economy, the public domain, and new forms of organization and networking.
A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes - Architectures and Applications - therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades. Multi-Processor System-on-Chip 2 covers application-specific MPSoC design, including compilers and architecture exploration. This second volume describes optimization methods, tools to optimize and port specific applications on MPSoC architectures. Details on compilation, power consumption and wireless communication are also presented, as well as examples of modeling frameworks and CAD tools. Explanations of specific platforms for automotive and real-time computing are also included.
Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date.
Readers are guided step by step through numerous specific problems and challenges, covering all aspects of electrostatics with an emphasis on numerical procedures. The author focuses on practical examples, derives mathematical equations, and addresses common issues with algorithms. Introduction to Numerical Electrostatics contains problem sets, an accompanying web site with simulations, and a complete list of computer codes. * Computer source code listings on accompanying web site * Problem sets included with book * Readers using MATLAB or other simulation packages will gain insight as to the inner workings of these packages, and how to account for their limitations * Example computer code is provided in MATLAB * Solutions Manual * The first book of its kind uniquely devoted to the field of computational electrostatics
Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the book presents new and emerging topics in areas including finance and economics, theoretical and applied mathematics, engineering and machine learning, physics, chemistry, ecology, and social science. In addition, the book thoroughly summarizes widely used mathematical and numerical methods in mathematical modeling and features: * Diverse topics such as partial differential equations (PDEs), fractional calculus, inverse problems by ordinary differential equations (ODEs), semigroups, decision theory, risk analysis, Bayesian estimation, nonlinear PDEs in financial engineering, perturbation analysis, and dynamic system modeling * Case studies and real-world applications that are widely used for current mathematical modeling courses, such as the green house effect and Stokes flow estimation * Comprehensive coverage of a wide range of contemporary topics, such as game theory, statistical models, and analytical solutions to numerical methods * Examples, exercises with select solutions, and detailed references to the latest literature to solidify comprehensive learning * New techniques and applications with balanced coverage of PDEs, discrete models, statistics, fractional calculus, and more Mathematical Modeling with Multidisciplinary Applications is an excellent book for courses on mathematical modeling and applied mathematics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for research scientists, mathematicians, and engineers who would like to develop further insights into essential mathematical tools.
The Complete, Modern Guide to Developing Well-Performing Signal Processing Algorithms In Fundamentals of Statistical Signal Processing, Volume III: Practical Algorithm Development, author Steven M. Kay shows how to convert theories of statistical signal processing estimation and detection into software algorithms that can be implemented on digital computers. This final volume of Kay's three-volume guide builds on the comprehensive theoretical coverage in the first two volumes. Here, Kay helps readers develop strong intuition and expertise in designing well-performing algorithms that solve real-world problems. Kay begins by reviewing methodologies for developing signal processing algorithms, including mathematical modeling, computer simulation, and performance evaluation. He links concepts to practice by presenting useful analytical results and implementations for design, evaluation, and testing. Next, he highlights specific algorithms that have "stood the test of time," offers realistic examples from several key application areas, and introduces useful extensions. Finally, he guides readers through translating mathematical algorithms into MATLAB (R) code and verifying solutions. Topics covered include Step-by-step approach to the design of algorithms Comparing and choosing signal and noise models Performance evaluation, metrics, tradeoffs, testing, and documentation Optimal approaches using the "big theorems" Algorithms for estimation, detection, and spectral estimation Complete case studies: Radar Doppler center frequency estimation, magnetic signal detection, and heart rate monitoring Exercises are presented throughout, with full solutions, and executable MATLAB code that implements all the algorithms is available for download. This new volume is invaluable to engineers, scientists, and advanced students in every discipline that relies on signal processing; researchers will especially appreciate its timely overview of the state of the practical art. Volume III complements Dr. Kay's Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory (Prentice Hall, 1993; ISBN-13: 978-0-13-345711-7), and Volume II: Detection Theory (Prentice Hall, 1998; ISBN-13: 978-0-13-504135-2).
A guide to drives essential to electric vehicles, wind turbines, and other motor-driven systems Analysis and Control of Electric Drives is a practical and comprehensive text that offers a clear understanding of electric drives and their industrial applications in the real-world including electric vehicles and wind turbines. The authors--noted experts on the topic--review the basic knowledge needed to understand electric drives and include the pertinent material that examines DC and AC machines in steady state using a unique physics-based approach. The book also analyzes electric machine operation under dynamic conditions, assisted by Space Vectors. The book is filled with illustrative examples and includes information on electric machines with Interior Permanent Magnets. To enhance learning, the book contains end-of-chapter problems and all topics covered use computer simulations with MATLAB Simulink(R) and Sciamble(R) Workbench software that is available free online for educational purposes. This important book: Explores additional topics such as electric machines with Interior Permanent Magnets Includes multiple examples and end-of-chapter homework problems Provides simulations made using MATLAB Simulink(R) and Sciamble(R) Workbench, free software for educational purposes Contains helpful presentation slides and Solutions Manual for Instructors; simulation files are available on the associated website for easy implementation A unique feature of this book is that the simulations in Sciamble(R) Workbench software can seamlessly be used to control experiments in a hardware laboratory Written for undergraduate and graduate students, Analysis and Control of Electric Drives is an essential guide to understanding electric vehicles, wind turbines, and increased efficiency of motor-driven systems.
A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes - Architectures and Applications - therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades. Multi-Processor System-on-Chip 1 covers the key components of MPSoC: processors, memory, interconnect and interfaces. It describes advance features of these components and technologies to build efficient MPSoC architectures. All the main components are detailed: use of memory and their technology, communication support and consistency, and specific processor architectures for general purposes or for dedicated applications.
Magneto-resistive recording heads are sensors that exploit magneto resistance effects to read digital magnetically recorded data. The industry of disk drives is growing because of the need for increased storage capacity. |
You may like...
Advanced Nanomaterials and Their…
Tian-Hao Yan, Sajid Bashir, …
Paperback
R4,294
Discovery Miles 42 940
Nanotechnology Principles in Drug…
Mahendra Rai, Shagufta Khan, …
Paperback
R5,194
Discovery Miles 51 940
|