![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > General issues > Medical equipment & techniques > General
This book explores the benefits of deploying Machine Learning (ML) and Artificial Intelligence (AI) in the health care environment. The authors study different research directions that are working to serve challenges faced in building strong healthcare infrastructure with respect to the pandemic crisis. The authors take note of obstacles faced in the rush to develop and alter technologies during the Covid crisis. They study what can be learned from them and what can be leveraged efficiently. The authors aim to show how healthcare providers can use technology to exploit advances in machine learning and deep learning in their own applications. Topics include remote patient monitoring, data analysis of human behavioral patterns, and machine learning for decision making in real-time.
Modern cancer research is a high-tech undertaking, overlapping with many fields in the physical sciences. These include nanotechnology, engineering, immunology, and bioinformatics. This book focuses on the science and technology underlying the diagnosis and treatement of cancer. The authors offer insights into technologies including radiotherapy, modelling, and drug encapsulation.
The book defines the differences between synthetic and natural superabsorbent polymers. It describes polymerization techniques, processing strategies and the use and importance of smart SAPs. It also includes SAP design to aid in selection of the best SAP for a specific application. The book is an indispensible resource for any academics and industrials interested in SAPs.
This book gives an introduction to the highly interdisciplinary field of biomaterials. It concisely summarizes properties, synthesis and modification of materials such as metals, ceramics, polymers or composites. Characterization, in vitro and in vivo testing as well as a selection of various applications are also part of this inevitable guide.
In today's hospitals, the gap between technology and medicine constantly needs to be bridged, both by physicians and engineers. By taking a unique clinical neuroengineering approach, From Neurology to Methodology and Back offers a translational study of neurology and technology from both sides. The fundamental topics covered range from basic concepts such as sampling and simple statistical measures via Fourier analysis to source localization. Providing clinically relevant context and introduce technical concepts, the neurological diseases presented range from epilepsy, brain tumors and cerebrovascular diseases to tremor, MS and neuromuscular diseases. All topics are presented in a true clinical neuroengineering approach. Each chapter begins with one or more patient cases for inspiration. Each case is then presented to illustrate a working example of a distinct neurodiagnostic technique, and the mathematical and physical principles underlying these techniques are explained. Finally, the author returns to the patient, and examines how the presented technology can help provide a diagnosis for each case. From Neurology to Methodology and Back serves as an upper-undergraduate/graduate level guide for those interested in a translational approach between the fields of medicine and technology in neuroengineering. Neurologists and residents in neurology, medical engineers, medical students, biomedical engineers and students, technical medicine students or students of other interdisciplinary fields will therefore all find this book useful. Each chapter begins with one or more patient cases for inspiration. Each case is then presented to illustrate a working example of a distinct neurodiagnostic technique, and the mathematical and physical principles underlying these techniques are explained. Finally, the author returns to the patient, and examines how the presented technology can help provide a diagnosis for each case. From Neurology to Methodology and Back serves as an upper-undergraduate/graduate level guide for those interested in a translational approach between the fields of medicine and technology in neuroengineering. Neurologists and residents in neurology, medical engineers, medical students, biomedical engineers and students, technical medicine students or students of other interdisciplinary fields will therefore all find this book useful.
Who are the people with disabilities in your neighborhood? Maggie
and Momma love going for walks. During every outing, Maggie learns
about something new. Today's no different Momma has arranged for
Maggie to meet lots of people in her neighborhood. They all have
different jobs. They all come from different cultures. They all use
different things to help their bodies. Maggie doesn't just stop to
chit-chat. Rather, she gets to the bottom of things. By asking the
right question, she discovers how many people with disabilities use
aids to help them out. Let's find out how they work, too
Cross-over trials are an important class of design used in the pharmaceutical industry and medical research, and their use continues to grow. Cross-over Trials in Clinical Research, Second Edition has been fully updated to include the latest methodology used in the design and analysis of cross-over trials. It includes more background material, greater coverage of important statistical techniques, including Bayesian methods, and discussion of analysis using a number of statistical software packages.
This book provides a comprehensive overview of advances in the field of medical data science, presenting carefully selected articles by leading information technology experts. Information technology, as a rapidly evolving discipline in medical data science, with significant potential in future healthcare, and multimodal acquisition systems, mobile devices, sensors, and AI-powered applications has redefined the optimization of clinical processes. This book features an interdisciplinary collection of papers that have both theoretical and applied dimensions, and includes the following sections: Medical Data Science Quantitative Data Analysis in Medical Diagnosis Data Mining Tools and Methods in Medical Applications Image Analysis Analytics in Action on SAS Platform Biocybernetics in Physiotherapy Signal Processing and Analysis Medical Tools & Interfaces Biomechanics and Biomaterials. As such, it is a valuable reference tool for scientists designing and implementing information processing tools used in systems that assist clinicians in patient care. It is also useful for students interested in innovations in quantitative medical data analysis, data mining, and artificial intelligence.
This open access volume focuses on the development of a P5 eHealth, or better, a methodological resource for developing the health technologies of the future, based on patients' personal characteristics and needs as the fundamental guidelines for design. It provides practical guidelines and evidence based examples on how to design, implement, use and elevate new technologies for healthcare to support the management of incurable, chronic conditions. The volume further discusses the criticalities of eHealth, why it is difficult to employ eHealth from an organizational point of view or why patients do not always accept the technology, and how eHealth interventions can be improved in the future. By dealing with the state-of-the-art in eHealth technologies, this volume is of great interest to researchers in the field of physical and mental healthcare, psychologists, stakeholders and policymakers as well as technology developers working in the healthcare sector.
This book is written in a very easy-to-follow format, and explains the key concepts of biomedical statistics in a lucid yet straightforward manner. It explains how mathematical and statistical tools can be used to find answers to common research questions. In addition, the main text is supplemented by a wealth of solved exercises and illustrative examples to aid in comprehension. Given its content, the book offers an invaluable quick reference guide for graduating students and can be very helpful in their examination process. At the same time, it represents a handy guide for medical and paramedical teachers, post-graduate medical students, research personnel, biomedical scientists and epidemiologists.
ITiB'2018 is the 6th Conference on Information Technology in Biomedicine, hosted every two years by the Department of Informatics & Medical Devices, Faculty of Biomedical Engineering, Silesian University of Technology. The Conference is organized under the auspices of the Committee on Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. The meeting has become an established event that helps to address the demand for fast and reliable technologies capable of processing data and delivering results in a user-friendly, timely and mobile manner. Many of these areas are recognized as research and development frontiers in employing new technology in the clinical setting. Technological assistance can be found in prevention, diagnosis, treatment, and rehabilitation alike. Homecare support for any type of disability may improve standard of living and make people's lives safer and more comfortable. The book includes the following sections: O Image Processing O Multimodal Imaging and Computer-aided Surgery O Computer-aided Diagnosis O Signal Processing and Medical Devices O Bioinformatics O Modelling & Simulation O Analytics in Action on the SAS Platform O Assistive Technologies and Affective Computing (ATAC)
This two-volume set LNBI 10813 and LNBI 10814 constitutes the proceedings of the 6th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2018, held in Granada, Spain, in April 2018.The 88 regular papers presented were carefully reviewed and selected from 273 submissions. The scope of the conference spans the following areas: bioinformatics for healthcare and diseases; bioinformatics tools to integrate omics dataset and address biological question; challenges and advances in measurement and self-parametrization of complex biological systems; computational genomics; computational proteomics; computational systems for modelling biological processes; drug delivery system design aided by mathematical modelling and experiments; generation, management and biological insights from big data; high-throughput bioinformatic tools for medical genomics; next generation sequencing and sequence analysis; interpretable models in biomedicine and bioinformatics; little-big data. Reducing the complexity and facing uncertainty of highly underdetermined phenotype prediction problems; biomedical engineering; biomedical image analysis; biomedical signal analysis; challenges in smart and wearable sensor design for mobile health; and healthcare and diseases.
Single-Use Technology (SUT) is the first comprehensive publication of practical considerations for each stage of the implementation process of SUT, and covers the selection, specification, design and qualification of systems to meet end-user requirements. Having become readily available for all processing operations within the biopharmaceutical industry, SUT has the potential to reduce capital costs, improve plant throughput and reduce the risk of cross-contamination. However, there are no clear guidelines to aid the end-user on implementation of these technologies into a validated, good manufacturing practice (GMP) environment. This book presents approaches for the implementation within various end-user facilities and systems, SUT within regulatory frameworks (ICH Q8, Q9, Q10 and GMP), standardisation and assessment strategies, specifation of user requirements and SUT design, risk assessment and evaluation as well as qualification for different SUT types.
Engineering Innovation is an overview of the interconnected business and product development techniques needed to nurture the development of raw, emerging technologies into commercially viable products. This book relates Funding Strategies, Business Development, and Product Development to one another as an idea is refined to a validated concept, iteratively developed into a product, then produced for commercialization. Engineering Innovation also provides an introduction to business strategies and manufacturing techniques on a technical level designed to encourage passionate clinicians, academics, engineers and savvy entrepreneurs. Offers a comprehensive overview of the process of bringing new technology to market. Identifies a variety of technology management skill sets and management tools. Explores concept generation in conjunction with intellectual property development for early-stage companies. Explores Quality and Transfer-to-Manufacturing.
Point of care ultrasound is a critical tool required for assessing all patients, providing rapid answers to clinical questions and facilitating high quality care for patients. This essential guide caters for all generalist clinicians beginning their ultrasound journey and extends to more advanced assessments for those with established ultrasound experience wishing to advance their knowledge and skills. It covers a wide range of ultrasound topics from echocardiography, thoracic and COVID-19 to emerging areas such as palliative care, hospital at home and remote and austere medicine. An extensive collection of colour images, videos and examples of clinical applications will inspire readers to acquire the skills of point of care ultrasound quickly, safely and systematically. The printed code on the inside of the cover provides access to an online version on Cambridge Core. An essential aid for acute clinicians, paramedics, general practitioners as well as remote medical providers, medical educators and students.
This book constitutes the thoroughly refereed post-conference proceedings of the International Conference for Smart Health, ICSH 2018, held in Wuhan, China, in July 2018.The 14 full papers and 21 short papers presented were carefully reviewed and selected from 49 submissions. They focus on studies on the principles, approaches, models, frameworks, new applications, and effects of using novel information technology to address healthcare problems and improve social welfare. The selected papers are organized into the following topics: smart hospital; online health community; mobile health; medical big data and healthcare machine learning; chronic disease management; and health informatics.
Rapid advancement of telecommunications and information technology has created the potential for high-quality expert healthcare to be delivered when and where it is needed. This text charts the development of the telemedicine industry, defines its current scope and reveals the potential of new methodologies.
This book offers a practical introduction to healthcare analytics that does not require a background in data science or statistics. It presents the basics of data, analytics and tools and includes multiple examples of their applications in the field. The book also identifies practical challenges that fuel the need for analytics in healthcare as well as the solutions to address these problems. In the healthcare field, professionals have access to vast amount of data in the form of staff records, electronic patient record, clinical findings, diagnosis, prescription drug, medical imaging procedure, mobile health, resources available, etc. Managing the data and analyzing it to properly understand it and use it to make well-informed decisions can be a challenge for managers and health care professionals. A new generation of applications, sometimes referred to as end-user analytics or self-serve analytics, are specifically designed for non-technical users such as managers and business professionals. The ability to use these increasingly accessible tools with the abundant data requires a basic understanding of the core concepts of data, analytics, and interpretation of outcomes. This book is a resource for such individuals to demystify and learn the basics of data management and analytics for healthcare, while also looking towards future directions in the field.
Cross-sectoral interaction and cooperation in the communication of nutritional health risks represents a strategic research area among national governments and international health authorities. The key research question this book addresses is whether and how different industrial sectors interact with each other in the communication and industrial utilisation of health research findings. Through the introduction and exploration of large-scale industry news and digital media resources, this book systematically analyses a range of digital news genres and identifies new and growing trends of inter-sectoral interaction around the communication of nutritional health in the Chinese language at both international and national levels. This book argues that cross-sectoral interaction can be explored to identify areas that require policy intervention to increase the efficiency and effectiveness of current health communication and promotion. Inter-sectoral interaction can also provide incentives to develop new social programmes and business models to innovate and transform traditional industrial sectors.
This book constitutes the refereed post-conference proceedings of the 7th International Conference on Mobile Communication and Healthcare, MobiHealth 2017, held in Vienna, Austria, in November 2017. The 34 revised full papers were reviewed and selected from more than 50 submissions and are organized in topical sections covering data analysis, systems, work-in-process, pervasive and wearable health monitoring, advances in healthcare services, design for healthcare, advances in soft wearable technology for mobile-health, sensors and circuits.
This book introduces medical imaging, its security requirements, and various security mechanisms using data hiding approaches. The book in particular provides medical data hiding techniques using various advanced image transforms and encryption methods. The book focuses on two types of data hiding techniques: steganography and watermarking for medical images. The authors show how these techniques are used for security and integrity verification of medical images and designed for various types of medical images such as grayscale image and color image. The implementation of techniques are done using discrete cosine transform (DCT), discrete wavelet transform (DWT), singular value decomposition (SVD), redundant DWT (RDWT), fast discrete curvelet transform (FDCuT), finite ridgelet transform (FRT) and non-subsampled contourlet transform (NSCT). The results of these techniques are also demonstrated after description of each technique. Finally, some future research directions are provided for security of medical images in telemedicine application. |
You may like...
Frontiers in Molecular Design and…
Rachelle J. Bienstock, Veerabahu Shanmugasundaram, …
Hardcover
R4,846
Discovery Miles 48 460
Global Health Informatics - How…
Heimar Marin, Eduardo Massad, …
Paperback
R1,872
Discovery Miles 18 720
Handbook of Electronic Assistive…
Ladan Najafi, Donna Cowan
Paperback
Sterilisation of Biomaterials and…
Sophie Le Rouge, Anne Simmons
Hardcover
R4,310
Discovery Miles 43 100
Contemporary Management of Metastatic…
Aslam Ejaz, Timothy M. Pawlik
Paperback
R3,237
Discovery Miles 32 370
|