![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Nursing & ancillary services > Biomedical engineering > General
This book presents the design, development and field trials of radio frequency based wireless monitoring system for sleep apnoea patients. It contains 4 major areas including general background of wireless monitoring technology and MIMO in wireless body area network (WBAN), microwave hardware designs, virtual MIMO in WBAN and hardware system level implementation and field trials. At components level, this book presents the design theory, process and examples of bandpass filters, lowpass filters, low profile patch antennas, power amplifiers and oscillators which are the key elements in transducer designs in the body area network and cooperative communication wireless sensor network system. At system level, this book features the hardware integration, field trial and network coding techniques. This book also gives a presentation of virtual MIMO applications, e.g. MIMO implementation using FPGA, correlation coefficient measurement. The book will create impact in the fields of wireless monitoring technology in biomedical engineering, which have been growing exponentially.
This book describes a set of novel statistical algorithms designed to infer functional connectivity of large-scale neural assemblies. The algorithms are developed with the aim of maximizing computational accuracy and efficiency, while faithfully reconstructing both the inhibitory and excitatory functional links. The book reports on statistical methods to compute the most significant functional connectivity graph, and shows how to use graph theory to extract the topological features of the computed network. A particular feature is that the methods used and extended at the purpose of this work are reported in a fairly completed, yet concise manner, together with the necessary mathematical fundamentals and explanations to understand their application. Furthermore, all these methods have been embedded in the user-friendly open source software named SpiCoDyn, which is also introduced here. All in all, this book provides researchers and graduate students in bioengineering, neurophysiology and computer science, with a set of simplified and reduced models for studying functional connectivity in in silico biological neuronal networks, thus overcoming the complexity of brain circuits.
This contributed volume is the first of a series that introduces safe, feasible, and practical decellularization and recellularization techniques for tissue and organ reconstruction. We have put special emphasis on the research areas most likely to develop well-engineered scaffolds for tissue and organ engineering, while presenting easily applicable bench-to-bedside approaches highlighting the latest technical innovations in the field. This book includes both a fundamental discussion for a broad understanding of the basis of tissue repair and substitution, as well as chapters written by world renowned specialists from 20 countries providing deeper discussions and analysis of related sub disciplines. Within these pages, the reader will find state-of-the-art protocols and current clinical challenges in cell and tissue biology, including accurate and comprehensive information on extracellular matrices, natural biomaterials, tissue dynamics, morphogenesis, stem cells, cellular fate progressions, cell and tissue properties for in-vitro and in-vivo applications. This comprehensive and carefully organized treatise provides a clear framework for graduate students and postdoctoral researchers new to the field, but also for researchers and practitioners looking to expand their knowledge on tissue and organ reconstruction.
This book provides an in-depth introduction to the newest technologies for designing wireless power transfer systems for medical applications. The authors present a systematic classification of the various types of wireless power transfer, with a focus on inductive power coupling. Readers will learn to overcome many challenges faced in the design a wirelessly powered implant, such as power transfer efficiency, power stability, and the size of power antennas and circuits. This book focuses exclusively on medical applications of the technology and a batteryless capsule endoscopy system and other, real wirelessly powered systems are used as examples of the techniques described.
Covers different technologies like AI, IoT and Signal Processing in the context of biomedical applications Reviews medical image analysis, disease detection, and prediction Comprehends the advantage of recent technologies for medical record keeping through electronics health records (EHRs) Presents state of art research in the field of biomedical engineering using various physiological signals Explores different Bio Sensors used in Healthcare Applications using IoT
The main goal of the present book is to deal with the role of nanobiotechnology in skin, soft tissue and bone infections since it is difficult to treat the infections due to the development of resistance in them against existing antibiotics. The present interdisciplinary book is very useful for a diverse group of readers including nanotechnologists, medical microbiologists, dermatologists, osteologists, biotechnologists, bioengineers. Nanotechnology in Skin, Soft-Tissue, and Bone Infections is divided into four sections: Section I- includes role of nanotechnology in skin infections such as atopic dermatitis, and nanomaterials for combating infections caused by bacteria and fungi. Section II- incorporates how nanotechnology can be used for soft-tissue infections such as diabetic foot ulcer and other wound infections; Section III- discusses about the nanomaterials in artificial scaffolds bone engineering and bone infections caused by bacteria and fungi; and also about the toxicity issues generated by the nanomaterials in general and nanoparticles in particular. The readers will be immensely enriched by the knowledge of new and emerging nanobiotechnologies in a variety of platforms.
Bridging the disciplines of engineering and medicine, ""Biomedical Engineering and Information Systems: Technologies, Tools and Applications"", informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services.
This work was compiled to serve as a convenient source that covers a number of techniques (and details of their use) in the rather large field of nanomedicine, with special attention paid to gene delivery. As principal investigators working in the field of nanomedicine, we sought to put together the most current and relevant topics in gene delivery, imaging and evaluation systems. We expect the work to serve very well for scientists and graduate students in the nanomedicine field.
This edited volume provides an overview the state-of-the-art in the field of cognitive neuroscience of memory consolidation. In a number of sections, the editors collect contributions of leading researchers . The topical focus lies on current issues of interest such as memory consolidation including working and long-term memory. In particular, the role of sleep in relation to memory consolidation will be addressed. The target audience primarily comprises research experts in the field of cognitive neuroscience but the book may also be beneficial for graduate students.
Presents cutting-edge research in biomedical engineering from materials, devices, imaging, and information perspectives All chapters are results of collaborative research in engineering and life sciences Useful resource for researchers, students, and general readers in biomedical engineering
Nanotechnology has the potential to change every part of our lives. Today, nanotechnology-based products are used in many areas, and one of the most important areas is drug delivery. Nanoparticulate drug delivery systems not only provide controlled delivery of drugs and improved drug solubility but also improve drug efficiency and reduce side effects via targeting mechanisms. However, compared with conventional drug delivery systems, few nanoparticle-based products are on the market and almost all are nontargeted or only passively targeted systems. In addition, obtaining targeted nanoparticle systems is quite complex and requires several evaluation mechanisms. This book discusses the production, characterization, regulation, and currently marketed targeted nanoparticle systems in a broad framework. It provides an overview of targeted nanoparticles' (i) in vitro characterization, such as particle size, stability, ligand density, and type; (ii) in vivo behavior for different targeting areas, such as tumor, brain, and vagina; and (iii) current advances in this field, including clinical trials and regulation processes.
Explores the utilization of marine surfactants for biological and biomedical applications Provides depth knowledge on marine surfactant preparations Discusses the development of personal care or cosmeceutical products using marine surfactants Examines various marine derived surfactants for treatment of cancer related diseases Reviews marine surfactants for environmental applications
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications.
The articles in this book review hybrid experimental-computational methods applied to soft tissues which have been developed by worldwide specialists in the field. People developing computational models of soft tissues and organs will find solutions for calibrating the material parameters of their models; people performing tests on soft tissues will learn what to extract from the data and how to use these data for their models and people worried about the complexity of the biomechanical behavior of soft tissues will find relevant approaches to address this complexity.
Bioelectronics is emerging as a new area of research where electronics can selectively detect, record, and monitor physiological signals. This is a rapidly expanding area of medical research, that relies heavily on multidisciplinary technology development and cutting-edge research in chemical, biological, engineering, and physical science. This book provides extensive information on the (i) fundamental concepts of bioelectronics, (ii) materials for the developments of bioelectronics such as implantable electronics, self-powered devices, bioelectronic sensors, flexible bioelectronics, etc, and (iii) an overview of the trends and gathering of the latest bioelectronic progress. This book will broaden our knowledge about newer technologies and processes used in bioelectronics.
The rise in living standards increases the expectation of people in almost every field. At the forefront is health. Over the past few centuries, there have been major developments in healthcare. Medical device technology and developments in artificial intelligence (AI) are among the most important ones. The improving technology and our ability to harness the technology effectively by means such as AI have led to unprecedented advances, resulting in early diagnosis of diseases. AI algorithms enable the fast and early evaluation of images from medical devices to maximize the benefits. While developments in the field of AI were quickly adapted to the field of health, in some cases this contributed to the formation of innovative artificial intelligence algorithms. Today, the most effective artificial intelligence method is accepted as deep learning. Convolutional neural network (CNN) architectures are deep learning algorithms used for image processing. This book contains applications of CNN methods. The content is quite extensive, including the application of different CNN methods to various medical image processing problems. Readers will be able to analyze the effects of CNN methods presented in the book in medical applications.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.The chapter "Aggregation-Induced Emission In Electrochemiluminescence: Advances and Perspectives" is available open access under a CC BY 4.0 License via link.springer.com.
This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN). The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability. The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority. Readers will also benefit from this book s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals. "
Advanced Porous Biomaterials for Drug Delivery Applications probes cutting-edge progress in the application of advanced porous biomaterials in drug delivery fields. These biomaterials offer promise in improving upon the design, cost, and creation of potent novel drug delivery systems. The book focuses on two categories: nature engineered and synthetic advanced porous biomaterials, with a wide range of low-cost porous biomaterial-based systems that have been used for the delivery of diverse drugs through in vitro/in vivo approaches. Details how advanced porous biomaterial-assisted systems improve essential properties in drug delivery applications Explains how advanced porous biomaterials systems are being used and explored to improve overall performances of drug delivery systems in mitigating a variety of diseases Emphasizes major applications in drug delivery such as controlled release, cancer therapy, and targeted delivery, and with focus on oral, topical, and transdermal applications Focuses on both naturally available and synthetic low-cost advanced porous biomaterials and their role in enhancing important parameters in drug delivery applications Accessible to readers with bio and non-bio backgrounds This book is an ideal reference for academics, researchers, and industry professionals in the interdisciplinary fields of biomedicine and biomedical engineering, pharmaceuticals, materials science, and chemistry.
This book characterizes how to design and synthesize nanomaterials of an organic and mineral nature. The book also discusses the visualization of developed nanomaterials and their bio-applications, as well as describes the biomedical effects and environmental impact of nanomaterials. This is an ideal book for students studying biomedicine or the life sciences, as well as researchers and professionals in medicine, environmental protection, biotechnology, agriculture, and the food industry. More specifically, this book addresses the important nanomaterials and nanobiotechnologies that are used in those fields in biomedicine and life sciences.
This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineers and physicists may benefit from the overview of current research endeavors and future directions. Furthermore, it may also serve to direct manufacturers towards the design of more efficient and safer clinical, industrial and laboratory equipment.
Biofluid Mechanics is a throrough reference to the entire field. Written with engineers and clinicians in mind, this book covers physiology and the engineering aspects of biofluids. Effectively bridging the gap between engineers' and clinicians' knowledge bases, the text provides information on physiology for engineers and information on the engineering side of biofluid mechanics for clinicians. Clinical applications of fluid mechanics principles to fluid flows throughout the body are included in each chapter. All engineering concepts and equations are developed within a biological context, together with computational simulation examples as well. Content covered includes; engineering models of human blood, blood rheology in the circulation system and problems in human organs and their side effects on biomechanics of the cardiovascular system. The information contained in this book on biofluid principles is core to bioengineering and medical sciences.
Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field's scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads between basic and applied science. In closing, the requirements for a suitable regulatory framework are discussed. The book is intended as a source of information and orientation for researchers, students and practitioners in the natural sciences and technology assessment; for members of scientific and technological, governmental and funding institutions; and for members of the general public interested in essential information on the current status, prospects and implications of synthetic biology.
This book gathers state-of-the-art research in computational engineering and bioengineering to facilitate knowledge exchange between various scientific communities. Computational engineering (CE) is a relatively new discipline that addresses the development and application of computational models and simulations often coupled with high-performance computing to solve complex physical problems arising in engineering analysis and design in the context of natural phenomena. Bioengineering (BE) is an important aspect of computational biology, which aims to develop and use efficient algorithms, data structures, and visualization and communication tools to model biological systems. Today, engineering approaches are essential for biologists, enabling them to analyse complex physiological processes, as well as for the pharmaceutical industry to support drug discovery and development programmes.
This book highlights the multifaceted roles of Reactive Oxygen Species (ROS) in modulating normal cellular and molecular mechanisms during the development of different types of heart disease. Each chapter in the book deals with the role that altered redox homeostasis plays in the pathophysiology of heart disease. In addition, the book explains how reactive oxidant species interact with their targets and provides novel strategies for attenuating oxidative stress-induced types of heart disease. The book not only covers ROS-induced response in heart disease at the cellular level, but also demonstrates that an imbalance of redox states has its roots in our genes, and explains the ways gene expression is regulated. In turn, it reviews potential sources of ROS, their pathological effects on the heart, and potential sites for therapeutic interventions. |
You may like...
How Consumer Culture Controls Our Kids…
Jennifer Hill
Hardcover
An Elephant In My Kitchen
Francoise Malby-Anthony, Katja Willemsen
Paperback
(1)
Neuroendocrine Regulation of Animal…
Cheryl S. Rosenfeld, Frauke Hoffmann
Paperback
R2,770
Discovery Miles 27 700
A Frequency Dictionary of French - Core…
Deryle Lonsdale, Yvon Le Bras
Paperback
R1,309
Discovery Miles 13 090
|