![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutative topology, Virtual Topology and Functor Geometry explores new aspects of these areas as well as more established facets of noncommutative algebra. Presenting the material in an easy, colloquial style to facilitate understanding, the book begins with an introduction to category theory, followed by a chapter on noncommutative spaces. This chapter examines noncommutative lattices, noncommutative opens, sheaf theory, the generalized Stone space, and Grothendieck topology. The author then studies Grothendieck categorical representations to formulate an abstract notion of "affine open". The final chapter proposes a dynamical version of topology and sheaf theory, providing at least one solution of the problem of sheafification independent of generalizations of topos theory. By presenting new ideas for the development of an intrinsically noncommutative geometry, this book fosters the further unification of different kinds of noncommutative geometry and the expression of observations that involve natural phenomena.
Featuring presentations from the Fourth International Conference on Commutative Algebra held in Fez, Morocco, this reference presents trends in the growing area of commutative algebra. With contributions from nearly 50 internationally renowned researchers, the book emphasizes innovative applications and connections to algebraic number theory, geometry, and homological and computational algebra. Presenting challenging problems of contemporary interest, discussions include linear Diophantine equations, going-down and going-up properties, and graded modules and analytic spread. They also cover algebroid curves and chain conditions, ideals and modules, and integral independence.
Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.
This book provides an account of part of the theory of Lie algebras most relevant to Lie groups. It discusses the basic theory of Lie algebras, including the classification of complex semisimple Lie algebras, and the Levi, Cartan and Iwasawa decompositions.
This book covers topics including the Redei-Reichardt theorem, automorphs of ternary quadratic forms, facts concerning rational matrices leading to integral ternary forms representing zero, characteristics polynomials of symmetric matrices, and Gauss' theory of ternary quadratic forms.
This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
Das etwas andere Mathe-Lehrbuch: Mathematik, die Informatiker (und nicht nur die!) wirklich brauchen, und die direkt am Computer umgesetzt wird in Form von kleinen Algorithmen, numerischen "Experimenten" und interaktiven Visualisierungen. Man lernt, wie man dem Computer das Rechnen uberlasst, wahrend man selbst den mathematischen UEberblick behalt, typische Fehler vermeidet und die Ergebnisse richtig interpretiert. (Und nebenbei lernt man noch die beliebte Programmiersprache Python sowie den Umgang mit einem Computeralgebrasystem.) Gleichzeitig wird die Mathematik aber nicht zur "Hilfswissenschaft" degradiert. Der Autor motiviert und begrundet im "Plauderton" und mit konkreten Beispielen und Knobelaufgaben (und manchmal auch mit kleinen philosophischen und historischen Exkursen), um so den Leser zum Mitmachen und Mitdenken aufzufordern. Im Idealfall hat man am Ende nicht nur etwas gelernt, sondern verspurt Lust auf mehr - und sieht die Mathematik danach vielleicht mit anderen Augen. Mit informatik-spezifischen Anwendungen unter anderem aus der Kryptographie, der Kodierungs- und Komplexitatstheorie sowie der Computergrafik. Unterstutzt durch viele farbige Grafiken, etwa 1000 Aufgaben mit Loesungen und nicht zuletzt Hunderte von Videos, in denen man sich das Gelesene vom Autor noch mal "persoenlich" erklaren lassen kann. Neu in der zweiten Auflage ist insbesondere ein Kapitel zur kontinuierlichen Fouriertransformation. Das Kapitel zur Informationstheorie wurde um Abschnitte uber Huffman-Codes und arithmetische Codierung erweitert. An diversen Stellen wurden ausserdem neue Aufgaben, Videos, Illustrationen und kleinere Erganzungen aufgenommen.
This is the first book to be dedicated entirely to Drinfeld's quasi-Hopf algebras. Ideal for graduate students and researchers in mathematics and mathematical physics, this treatment is largely self-contained, taking the reader from the basics, with complete proofs, to much more advanced topics, with almost complete proofs. Many of the proofs are based on general categorical results; the same approach can then be used in the study of other Hopf-type algebras, for example Turaev or Zunino Hopf algebras, Hom-Hopf algebras, Hopfish algebras, and in general any algebra for which the category of representations is monoidal. Newcomers to the subject will appreciate the detailed introduction to (braided) monoidal categories, (co)algebras and the other tools they will need in this area. More advanced readers will benefit from having recent research gathered in one place, with open questions to inspire their own research.
For courses in introductory linear algebra This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Introduction to Linear Algebra, 5th Edition is a foundation book that bridges both practical computation and theoretical principles. Due to its flexible table of contents, the book is accessible for both students majoring in the scientific, engineering, and social sciences, as well as students that want an introduction to mathematical abstraction and logical reasoning. In order to achieve the text's flexibility, the book centers on 3 principal topics: matrix theory and systems of linear equations, elementary vector space concepts, and the eigenvalue problem. This highly adaptable text can be used for a one-quarter or one-semester course at the sophomore/junior level, or for a more advanced class at the junior/senior level.
This volume covers the most up-to-date findings on string field theory. It is presented in a new approach as a result of insights gained from the theory. This includes the use of a universal method for treating free field theories, which allows the derivation of a single, simple, free, local, Poincare-invariant, gauge-invariant action that can be applied directly to any fields.
This volume covers the most up-to-date findings on string field theory. It is presented in a new approach as a result of insights gained from the theory. This includes the use of a universal method for treating free field theories, which allows the derivation of a single, simple, free, local, Poincare-invariant, gauge-invariant action that can be applied directly to any fields.
This volume reviews the subject of Kac-Moody and Virasoro Algebras. It serves as a reference book for physicists with commentary notes and reprints.
This volume reviews the subject of Kac-Moody and Virasoro Algebras. It serves as a reference book for physicists with commentary notes and reprints.
This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.
This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.
This book is purely algebraic and concentrates on cyclic homology rather than on cohomology. It attempts to single out the basic algebraic facts and techniques of the theory.The book is organized in two chapters. The first chapter deals with the intimate relation of cyclic theory to ordinary Hochschild theory. The second chapter deals with cyclic homology as a typical characteristic zero theory.
This book is purely algebraic and concentrates on cyclic homology rather than on cohomology. It attempts to single out the basic algebraic facts and techniques of the theory.The book is organized in two chapters. The first chapter deals with the intimate relation of cyclic theory to ordinary Hochschild theory. The second chapter deals with cyclic homology as a typical characteristic zero theory.
This book presents an introduction to the structure and representation theory of modular Lie algebras over fields of positive characteristic. It introduces the beginner to the theory of modular Lie algebras and is meant to be a reference text for researchers.
This book is an exposition on the interesting interplay between topological dynamics and the theory of C*-algebras. Researchers working in topological dynamics from various fields in mathematics are becoming more and more interested in this kind of algebraic approach of dynamics. This book is designed to present to the readers the subject in an elementary way, including also results of recent developments.
A one-semester alternative to the traditional two-semester developmental algebra sequence for non-STEM or STEM track students (Science, Technology, Engineering, and Math) students. Every student can succeed. Elayn Martin-Gay's developmental math textbooks and video resources are motivated by her firm belief that every student can succeed. Martin-Gay's focus on the student shapes her clear, accessible writing, inspires her constant pedagogical innovations, and contributes to the popularity and effectiveness of her video resources. Martin-Gay's Path to College Mathematics offers a flexible, accelerated pathway to college readiness, preparing both STEM and non-STEM students for their next course and to achieve their career goals. Also available with MyMathLab (R) MyMathLab is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. Note: You are purchasing a standalone product; MyLab (TM) & Mastering (TM) does not come packaged with this content. Students, if interested in purchasing this title with MyLab & Mastering, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab & Mastering, search for: 0134618521 / 9780134618524 Pathways to College Mathematics plus MyMathLab with Pearson eText -- Access Card Package 1/e Package consists of: 0134654404 / 9780134654409 Path to College Mathematics 0321431308 / 9780321431301 MyMathLab -- Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker Students can use the URL and phone number below to help answer their questions: http://247pearsoned.custhelp.com/app/home 800-677-6337
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
This monograph details basic concepts and tools fundamental for the analysis and synthesis of linear systems subject to actuator saturation and developments in recent research. The authors use a state-space approach and focus on stability analysis and the synthesis of stabilizing control laws in both local and global contexts. Different methods of modeling the saturation and behavior of the nonlinear closed-loop system are given special attention. Various kinds of Lyapunov functions are considered to present different stability conditions. Results arising from uncertain systems and treating performance in the presence of saturation are given. The text proposes methods and algorithms, based on the use of linear programming and linear matrix inequalities, for computing estimates of the basin of attraction and for designing control systems accounting for the control bounds and the possibility of saturation. They can be easily implemented with mathematical software packages.
Cluster analysis means the organization of an unlabeled collection of objects or patterns into separate groups based on their similarity. The task of computerized data clustering has been approached from diverse domains of knowledge like graph theory, multivariate analysis, neural networks, fuzzy set theory, and so on. Clustering is often described as an unsupervised learning method but most of the traditional algorithms require a prior specification of the number of clusters in the data for guiding the partitioning process, thus making it not completely unsupervised. Modern data mining tools that predict future trends and behaviors for allowing businesses to make proactive and knowledge-driven decisions, demand fast and fully automatic clustering of very large datasets with minimal or no user intervention. In this volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges. Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry. |
You may like...
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,317
Discovery Miles 53 170
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
|