![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
Algebra I For Dummies, 2nd Edition (9781119293576) was previously published as Algebra I For Dummies, 2nd Edition (9780470559642). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Factor fearlessly, conquer the quadratic formula, and solve linear equations There's no doubt that algebra can be easy to some while extremely challenging to others. If you're vexed by variables, Algebra I For Dummies, 2nd Edition provides the plain-English, easy-to-follow guidance you need to get the right solution every time! Now with 25% new and revised content, this easy-to-understand reference not only explains algebra in terms you can understand, but it also gives you the necessary tools to solve complex problems with confidence. You'll understand how to factor fearlessly, conquer the quadratic formula, and solve linear equations. Includes revised and updated examples and practice problems Provides explanations and practical examples that mirror today's teaching methods Other titles by Sterling: Algebra II For Dummies and Algebra Workbook For Dummies Whether you're currently enrolled in a high school or college algebra course or are just looking to brush-up your skills, Algebra I For Dummies, 2nd Edition gives you friendly and comprehensible guidance on this often difficult-to-grasp subject.
This invaluable reference is the first to present the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area. A major trend in modern mathematics, inspired largely by physics, is toward noncommutative' or quantized' phenomena. In functional analysis, this has appeared notably under the name of operator spaces', which is a variant of Banach spaces which is particularly appropriate for solving problems concerning spaces or algebras of operators on Hilbert space arising in 'noncommutative mathematics'. The category of operator spaces includes operator algebras, selfadjoint (that is, C*-algebras) or otherwise. Also, most of the important modules over operator algebras are operator spaces. A common treatment of the subjects of C*-algebras, Non-selfadjoint operator algebras, and modules over such algebras (such as Hilbert C*-modules), together under the umbrella of operator space theory, is the main topic of the book. A general theory of operator algebras, and their modules, naturally develops out of the operator space methodology. Indeed, operator space theory is a sensitive enough medium to reflect accurately many important non-commutative phenomena. Using recent advances in the field, the book shows how the underlying operator space structure captures, very precisely, the profound relations between the algebraic and the functional analytic structures involved. The rich interplay between spectral theory, operator theory, C*-algebra and von Neumann algebra techniques, and theinflux of important ideas from related disciplines, such as pure algebra, Banach space theory, Banach algebras, and abstract function theory is highlighted. Each chapter ends with a lengthy section of notes containing a wealth of additional information.
Kasch Modules.- Compactness in Categories and Interpretations.- A Ring of Morita Context in Which Each Right Ideal is Weakly Self-injective.- Splitting Theorems and a Problem of Muller.- Decompositions of D1 Modules.- Right Cones in Groups.- On Extensions of Regular Rings of Finite Index by Central Elements.- Intersections of Modules.- Minimal Cogenerators Over Osofsky and Camillo Rings.- Uniform Modules Over Goldie Prime Serial Rings.- Co-Versus Contravariant Finiteness of Categories of Representations.- Monomials and the Lexicographic Order.- Rings Over Which Direct Sums of CS Modules Are CS.- Exchange Properties and the Total.- Local Bijective Gabriel Correspondence and Torsion Theoretic FBN Rings.- Normalizing Extensions and the Second Layer Condition.- Generators of Subgroups of Finite Index in GLm (?G).- Weak Relative Injective M-Subgenerated Modules.- Direct Product and Power Series Formations Over 2-Primal Rings.- Localization in Noetherian Rings.- Projective Dimension of Ideals in Von Neumann Regular Rings.- Homological Properties of Color Lie Superalgebras.- Indecomposable Modules Over Artinian Right Serial Rings.- Nonsingular Extending Modules.- Right Hereditary, Right Perfect Rings Are Semiprimary.- On the Endomorphism Ring of a Discrete Module: A Theorem of F. Kasch.- Nonsingular Rings with Finite Type Dimension.
The prototypical multilinear operation is multiplication. Indeed, every multilinear mapping can be factored through a tensor product. Apart from its intrinsic interest, the tensor product is of fundamental importance in a variety of disciplines, ranging from matrix inequalities and group representation theory, to the combinatorics of symmetric functions, and all these subjects appear in this book. Another attraction of multilinear algebra lies in its power to unify such seemingly diverse topics. This is done in the final chapter by means of the rational representations of the full linear group. Arising as characters of these representations, the classical Schur polynomials are one of the keys to unification. Prerequisites for the book are minimized by self-contained introductions in the early chapters. Throughout the text, some of the easier proofs are left to the exercises, and some of the more difficult ones to the references.
This monograph is devoted to the study of Polygroup Theory. It begins with some basic results concerning group theory and algebraic hyperstructures, which represent the most general algebraic context, in which reality can be modeled. Most results on polygroups are collected in this book. Moreover, this monograph is the first book on this theory. The volume is highly recommended to theoreticians in pure and applied mathematics.
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Normal 0 false false false Are you ready to ace calculus at the college level? With this book, you will be Professors often say "Students don't fail the calculus, they fail the algebra." In other words, even if you understand calculus, your algebra and trigonometry skills can hold you back. Here's a quick quiz--do you remember how to: Factor trinomials? Solve equations containing exponents and logs? Work with inverse trig functions? If not, that's where this book comes in handy "Just-in-Time" is designed to bolster the algebra and trigonometry skills you'll need while you study calculus. As you make your way through the course, "Just-in-Time" is with you every step of the way, showing you the exact algebra or trigonometry topics that you'll need and pointing out potential problem spots. The easy-to-use Table of Contents features the calculus subject listed directly across from the algebra/trigonometry skills needed to master that topic. Use this book as your study companion and put your anxiety to rest
This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practitioners in research and industry need a fundamental and sound understanding of the principles. This work presents the underlying physical foundations.
Learn how to use the modern techniques offered by Maple V, a
powerful and popular computer algebra system. The Maple V Primer:
Release 4 covers all the basic topics a reader needs to know to use
Maple V in its major revision encompassed in Release 4 to do
algebra and calculus, solve equations, graph 2- and 3-dimensional
plots, perform simple programming tasks, and prepare mathematical
documents.
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
A generalization of Conventional Matrix Product (CMP), called the Semi-Tensor Product (STP), is proposed. It extends the CMP to two arbitrary matrices and maintains all fundamental properties of CMP. In addition, it has a pseudo-commutative property, which makes it more superior to CMP. The STP was proposed by the authors to deal with higher-dimensional data as well as multilinear mappings. After over a decade of development, STP has been proven to be a powerful tool in dealing with nonlinear and logical calculations. This book is a comprehensive introduction to the theory of STP and its various applications, including logical function, fuzzy control, Boolean networks, analysis and control of nonlinear systems, amongst others.
In this book we want to explore aspects of coherence in homological algebra, that already appear in the classical situation of abelian groups or abelian categories. Lattices of subobjects are shown to play an important role in the study of homological systems, from simple chain complexes to all the structures that give rise to spectral sequences. A parallel role is played by semigroups of endorelations.These links rest on the fact that many such systems, but not all of them, live in distributive sublattices of the modular lattices of subobjects of the system.The property of distributivity allows one to work with induced morphisms in an automatically consistent way, as we prove in a 'Coherence Theorem for homological algebra'. (On the contrary, a 'non-distributive' homological structure like the bifiltered chain complex can easily lead to inconsistency, if one explores the interaction of its two spectral sequences farther than it is normally done.)The same property of distributivity also permits representations of homological structures by means of sets and lattices of subsets, yielding a precise foundation for the heuristic tool of Zeeman diagrams as universal models of spectral sequences.We thus establish an effective method of working with spectral sequences, called 'crossword chasing', that can often replace the usual complicated algebraic tools and be of much help to readers that want to apply spectral sequences in any field.
On Convex Combinations of Unitary Operators in C*-Algebras.- Approximately Inner Derivations, Decompositions and Vector Fields of Simple C*-Algebras.- Derivations in Commutative C*-Algebras.- Representation of Quantum Groups.- Automorphism Groups and Covariant Irreducible Representations.- Proper Actions of Groups on C*-Algebras.- On the Baum-Connes Conjecture.- On Primitive Ideal Spaces of C*-Algebras over Certain Locally Compact Groupoids.- On Sequences of Jones' Projections.- The Powers' Binary Shifts on the Hyperfinite Factor of Type II1.- Index Theory for Type III Factors.- Relative Entropy of a Fixed Point Algebra.- Jones Index Theory for C*-Algebras.- Three Tensor Norms for Operator Spaces.- Extension Problems for Maps on Operator Systems.- Multivariable Toeplitz Operators and Index Theory.- On Maximality of Analytic Subalgebras Associated with Flow in von Neumann Algebras.- Reflections Relating a von Neumann Algebra and Its Commutant.- Normal AW*-Algebras.
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
Algebraic graph theory is a fascinating subject concerned with the interplay between algebra and graph theory. Algebraic tools can be used to give surprising and elegant proofs of graph theoretic facts, and there are many interesting algebraic objects associated with graphs. The authors take an inclusive view of the subject, and present a wide range of topics. These range from standard classics, such as the characterization of line graphs by eigenvalues, to more unusual areas such as geometric embeddings of graphs and the study of graph homomorphisms. The authors' goal has been to present each topic in a self-contained fashion, presenting the main tools and ideas, with an emphasis on their use in understanding concrete examples. A substantial proportion of the book covers topics that have not appeared in book form before, and as such it provides an accessible introduction to the research literature and to important open questions in modern algebraic graph theory. This book is primarily aimed at graduate students and researchers in graph theory, combinatorics, or discrete mathematics in general. However, all the necessary graph theory is developed from scratch, so the only pre-requisite for reading it is a first course in linear algebra and a small amount of elementary group theory. It should be accessible to motivated upper-level undergraduates. Chris Godsil is a full professor in the Department of Combinatorics and Optimization at the University of Waterloo. His main research interests lie in the interactions between algebra and combinatorics, in particular the application of algebraic techniques to graphs, designs and codes. He has published more than 70 papers in these areas, is a founding editor of "The Journal of Algebraic Combinatorics" and is the author of the book "Algebraic Combinatorics". Gordon Royle teaches in the Department of Computer Science & Software Engineering at the University of Western Australia. His main research interests lie in the application of computers to combinatorial problems, in particular the cataloguing, enumeration and investigation of graphs, designs and finite geometries. He has published more than 30 papers in graph theory, design theory and finite geometry.
The study of noncommutative rings is a major area in modern algebra. The structure theory of noncommutative rings was originally concerned with three parts: The study of semi-simple rings; the study of radical rings; and the construction of rings with given radical and semi-simple factor rings. Recently, this has extended to many new parts: The zero-divisor theory, containing the study of coefficients of zero-dividing polynomials and the study of annihilators over noncommutative rings, that is related to the Koethe's conjecture; the study of nil rings and Jacobson rings; the study of applying ring-theoretic properties to modules; representation theory; the study of relations between algebraic and concepts of other branches (for example, analytic and topological), etc. Thus, noncommutative rings are ubiquitous in mathematics, and occur in numerous sciences.This volume consists of a collection of original articles refereed by world experts that was presented at the Sixth China-Japan-Korea International Conference on Ring Theory. These articles exhibit new ideas, tools and techniques needed for successful research and investigation in noncommutative ring theory, and show the trend of current research. It is a useful resource book for beginners and advanced experts in ring theory.
Control theory represents an attempt to codify, in mathematical terms, the principles and techniques used in the analysis and design of control systems. Algebraic geometry may, in an elementary way, be viewed as the study of the structure and properties of the solutions of systems of algebraic equations. The aim of these notes is to provide access to the methods of algebraic geometry for engineers and applied scientists through the motivated context of control theory. I began the development of these notes over fifteen years ago with a series of lectures given to the Control Group at the Lund Institute of Technology in Sweden. Over the following years, I presented the material in courses at Brown several times and must express my appreciation for the feedback (sic ) received from the students. I have attempted throughout to strive for clarity, often making use of constructive methods and giving several proofs of a particular result. Since algebraic geometry draws on so many branches of mathematics and can be dauntingly abstract, it is not easy to convey its beauty and utility to those interested in applications. I hope at least to have stirred the reader to seek a deeper understanding of this beauty and utility in control theory. The first volume dea1s with the simplest control systems (i. e. single input, single output linear time-invariant systems) and with the simplest algebraic geometry (i. e. affine algebraic geometry).
In a component-based approach for system design, one of the challenging problems is the way to prove the correctness of the created components. Usually, the constituent components are supposed to be correct - possessing the desirable properties and free from undesirable ones. However, the operators may destroy these properties or create new ones, resulting in an undesirable new component. Hence, every created component has to go through a new process of verification, involving a tremendous amount of effort.This book presents a component -based methodology for the creation and verification of design specifications. The methodology is formally presented as an algebra called Property-Preserving Petri Net Process Algebra (PPPA). PPPA includes five classes of operators, and the authors show that every operator of PPPA can preserve a large number of basic system properties. Therefore, if the initial set of primitive components satisfies some of these properties, the created components will also "automatically" satisfy them without the need for further verification - thus greatly saving verification efforts.
The book aims to exemplify the recent developments in operad theory, in universal algebra and related topics in algebraic topology and theoretical physics. The conference has established a better connection between mathematicians working on operads (mainly the French team) and mathematicians working in universal algebra (primarily the Chinese team), and to exchange problems, methods and techniques from these two subject areas.
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form ( cylindric in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin. "
This volume is an outcome of the International Conference on Algebra in celebration of the 70th birthday of Professor Shum Kar-Ping which was held in Gadjah Mada University on 7-10 October 2010. As a consequence of the wide coverage of his research interest and work, it presents 54 research papers, all original and referred, describing the latest research and development, and addressing a variety of issues and methods in semigroups, groups, rings and modules, lattices and Hopf Algebra. The book also provides five well-written expository survey articles which feature the structure of finite groups by A Ballester-Bolinches, R Esteban-Romero, and Yangming Li; new results of Groebner-Shirshov basis by L A Bokut, Yuqun Chen, and K P Shum; polygroups and their properties by B Davvaz; main results on abstract characterizations of algebras of n-place functions obtained in the last 40 years by Wieslaw A Dudek and Valentin S Trokhimenko; Inverse semigroups and their generalizations by X M Ren and K P Shum. Recent work on cones of metrics and combinatorics done by M M Deza et al. is included.
Using a modern matrix-based approach, this rigorous second course in linear algebra helps upper-level undergraduates in mathematics, data science, and the physical sciences transition from basic theory to advanced topics and applications. Its clarity of exposition together with many illustrations, 900+ exercises, and 350 conceptual and numerical examples aid the student's understanding. Concise chapters promote a focused progression through essential ideas. Topics are derived and discussed in detail, including the singular value decomposition, Jordan canonical form, spectral theorem, QR factorization, normal matrices, Hermitian matrices, and positive definite matrices. Each chapter ends with a bullet list summarizing important concepts. New to this edition are chapters on matrix norms and positive matrices, many new sections on topics including interpolation and LU factorization, 300+ more problems, many new examples, and color-enhanced figures. Prerequisites include a first course in linear algebra and basic calculus sequence. Instructor's resources are available.
The book aims to survey recent developments in quantum algebras and related topics. Quantum groups were introduced by Drinfeld and Jimbo in 1985 in their work on Yang Baxter equations. The subject from the very beginning has been an interesting one for both mathematics and theoretical physics. For example, Yangian is a special example of quantum group, corresponding to rational solution of Yang Baxter equation. Viewed as a generalization of the symmetric group, Yangians also have close connections to algebraic combinatorics. This is the proceeding for the International Workshop on Quantized Algebra and Physics. The workshop aims to gather experts and young investigators from China and abroad to discuss research problems in integrable systems, conformal field theory, string theory, Lie theory, quantum groups including Yangians and their representations.
The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
McGraw-Hill Education Algebra I Review…
Sandra Luna McCune
Paperback
|