![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
This book is for those interested in number systems, abstract algebra, and analysis. It provides an understanding of negative and fractional numbers with theoretical background and explains rationale of irrational and complex numbers in an easy to understand format. This book covers the fundamentals, proof of theorems, examples, definitions, and concepts. It explains the theory in an easy and understandable manner and offers problems for understanding and extensions of concept are included. The book provides concepts in other fields and includes an understanding of handling of numbers by computers. Research scholars and students working in the fields of engineering, science, and different branches of mathematics will find this book of interest, as it provides the subject in a clear and concise way.
This monograph arose from lectures at the University of Oklahoma on topics related to linear algebra over commutative rings. It provides an introduction of matrix theory over commutative rings. The monograph discusses the structure theory of a projective module.
This book deals with analytic treatments of Markov processes. Symmetric Dirichlet forms and their associated Markov processes are important and powerful tools in the theory of Markov processes and their applications. The theory is well studied and used in various fields. In this monograph, we intend to generalize the theory to non-symmetric and time dependent semi-Dirichlet forms. By this generalization, we can cover the wide class of Markov processes and analytic theory which do not possess the dual Markov processes. In particular, under the semi-Dirichlet form setting, the stochastic calculus is not well established yet. In this monograph, we intend to give an introduction to such calculus. Furthermore, basic examples different from the symmetric cases are given. The text is written for graduate students, but also researchers.
The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
After being an open question for sixty years the Tarski conjecture was answered in the affirmative by Olga Kharlampovich and Alexei Myasnikov and independently by Zlil Sela. Both proofs involve long and complicated applications of algebraic geometry over free groups as well as an extension of methods to solve equations in free groups originally developed by Razborov. This book is an examination of the material on the general elementary theory of groups that is necessary to begin to understand the proofs. This material includes a complete exposition of the theory of fully residually free groups or limit groups as well a complete description of the algebraic geometry of free groups. Also included are introductory material on combinatorial and geometric group theory and first-order logic. There is then a short outline of the proof of the Tarski conjectures in the manner of Kharlampovich and Myasnikov.
Linear Algebra, James R. Kirkwood and Bessie H. Kirkwood, 978-1-4987-7685-1, K29751 Shelving Guide: Mathematics This text has a major focus on demonstrating facts and techniques of linear systems that will be invaluable in higher mathematics and related fields. A linear algebra course has two major audiences that it must satisfy. It provides an important theoretical and computational tool for nearly every discipline that uses mathematics. It also provides an introduction to abstract mathematics. This book has two parts. Chapters 1-7 are written as an introduction. Two primary goals of these chapters are to enable students to become adept at computations and to develop an understanding of the theory of basic topics including linear transformations. Important applications are presented. Part two, which consists of Chapters 8-14, is at a higher level. It includes topics not usually taught in a first course, such as a detailed justification of the Jordan canonical form, properties of the determinant derived from axioms, the Perron-Frobenius theorem and bilinear and quadratic forms. Though users will want to make use of technology for many of the computations, topics are explained in the text in a way that will enable students to do these computations by hand if that is desired. Key features include: Chapters 1-7 may be used for a first course relying on applications Chapters 8-14 offer a more advanced, theoretical course Definitions are highlighted throughout MATLAB (R) and R Project tutorials in the appendices Exercises span a range from simple computations to fairly direct abstract exercises Historical notes motivate the presentation
This book provides an integrated treatment of the theory of nonnegative matrices and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimization and mathematical economics. The authors have chosen the wide variety of applications, which include price fixing, scheduling, and the fair division problem, both for their elegant mathematical content and for their accessibility to students with minimal preparation. They present many new results in matrix theory for the first time in book form, while they present more standard topics in a novel fashion. The treatment is rigorous and almost all results are proved completely. These new results and applications will be of great interest to researchers in linear programming, statistics, and operations research. The minimal prerequisites also make the book accessible to first year graduate students.
This work is at the crossroads of a number of mathematical areas, including algebraic geometry, several complex variables, differential geometry, and representation theory. It is the first book to cover complex tori, among the simplest of complex manifolds, which are important to research in the above areas. The book gives a systematic approach to the theory, presents new results, and includes an up-to-date bibliography.
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
In the 2012-13 academic year, the Mathematical Sciences Research Institute, Berkeley, hosted programs in Commutative Algebra (Fall 2012 and Spring 2013) and Noncommutative Algebraic Geometry and Representation Theory (Spring 2013). There have been many significant developments in these fields in recent years; what is more, the boundary between them has become increasingly blurred. This was apparent during the MSRI program, where there were a number of joint seminars on subjects of common interest: birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, and tilting theory, to name a few. These volumes reflect the lively interaction between the subjects witnessed at MSRI. The Introductory Workshops and Connections for Women Workshops for the two programs included lecture series by experts in the field. The volumes include a number of survey articles based on these lectures, along with expository articles and research papers by participants of the programs. Volume 2 focuses on the most recent research.
This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' notes at the Department of Mathematics, National Chung Cheng University, it contains material sufficient for three semesters of study. It begins with a description of the algebraic structures of the ring of integers and the field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's theorem and Sylow's theorems follow as applications of group theory. The theory of rings and ideals forms the second part of this textbook, with the ring of integers, the polynomial rings and matrix rings as basic examples. Emphasis will be on factorization in a factorial domain. The final part of the book focuses on field extensions and Galois theory to illustrate the correspondence between Galois groups and splitting fields of separable polynomials.Three whole new chapters are added to this second edition. Group action is introduced to give a more in-depth discussion on Sylow's theorems. We also provide a formula in solving combinatorial problems as an application. We devote two chapters to module theory, which is a natural generalization of the theory of the vector spaces. Readers will see the similarity and subtle differences between the two. In particular, determinant is formally defined and its properties rigorously proved.The textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
This book examines engineering and mathematical models for documenting and approving mechanical and environmental discharges. The author emphasizes engineering design considerations as well as applications to waste water and atmospheric discharges. Chapters discuss: the fundamentals of turbulent jet mixing, dilution concepts, and mixing zone concepts diffuser configurations and head loss calculations different modeling techniques and accepted models - discussed in detail with theoretical background, restrictions, input, output, and examples Lagrangian and the EPA UM 2-dimensional diffuser model the PLUMES interface Eulerian integral methods, EPA UDKHG 3-dimensional diffuser model, and PDSG surface discharge model empirical techniques, RSB diffuser model, the CORMIX family of models for both diffusers and surface discharge numerical methods with a discussion of shelf commercial models Gaussian atmospheric plume models Fundamentals of Environmental Discharge Modeling includes numerous case studies and examples for each model and problem.
This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book", became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now.This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics.The material and references have been brought up to date by the editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life.The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds. remove
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
Absolutely everything you need to get ready for Algebra Scared of square roots? Suspicious of powers of ten? You're not alone. Plenty of school-age students and adult learners don't care for math. But, with the right guide, you can make math basics "click" for you too! In Basic Math & Pre-Algebra All-in-One For Dummies, you'll find everything you need to be successful in your next math class and tackle basic math tasks in the real world. Whether you're trying to get a handle on pre-algebra before moving to the next grade or looking to get more comfortable with everyday math--such as tipping calculations or balancing your checkbook--this book walks you through every step--in plain English, and with clear explanations--to help you build a firm foundation in math. You'll also get: Practice quizzes at the end of each chapter to test your comprehension and understanding A bonus online quiz for each chapter, with answer choices presented in multiple choice format A ton of explanations, examples, and practice problems that prepare you to tackle more advanced algebraic concepts From the different categories of numbers to mathematical operations, fractions, percentages, roots and powers, and a short intro to algebraic expressions and equations, Basic Math & Pre-Algebra All-in-One For Dummies is an essential companion for anyone who wants to get a handle on the foundational math concepts that are the building blocks for Algebra and beyond.
This book covers the application of algebraic inequalities for reliability improvement and for uncertainty and risk reduction. It equips readers with powerful domain-independent methods for reducing risk based on algebraic inequalities and demonstrates the significant benefits derived from the application for risk and uncertainty reduction. Algebraic inequalities: * Provide a powerful reliability improvement, risk and uncertainty reduction method that transcends engineering and can be applied in various domains of human activity * Present an effective tool for dealing with deep uncertainty related to key reliability-critical parameters of systems and processes * Permit meaningful interpretations which link abstract inequalities with the real world * Offer a tool for determining tight bounds for the variation of risk-critical parameters and complying the design with these bounds to avoid failure * Allow optimising designs and processes by minimising the deviation of critical output parameters from their specified values and maximising their performance This book is primarily for engineering professionals and academic researchers in virtually all existing engineering disciplines.
This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book", became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now.This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics.The material and references have been brought up to date by the editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life.The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds. remove
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.
The exponential distribution is one of the most significant and widely used distribution in statistical practice. It possesses several important statistical properties, and yet exhibits great mathematical tractability. This volume provides a systematic and comprehensive synthesis of the diverse literature on the theory and applications of the expon
The trajectory of fractional calculus has undergone several periods of intensive development, both in pure and applied sciences. During the last few decades fractional calculus has also been associated with the power law effects and its various applications. It is a natural to ask if fractional calculus, as a nonlocal calculus, can produce new results within the well-established field of Lie symmetries and their applications. In Lie Symmetry Analysis of Fractional Differential Equations the authors try to answer this vital question by analyzing different aspects of fractional Lie symmetries and related conservation laws. Finding the exact solutions of a given fractional partial differential equation is not an easy task, but is one that the authors seek to grapple with here. The book also includes generalization of Lie symmetries for fractional integro differential equations. Features Provides a solid basis for understanding fractional calculus, before going on to explore in detail Lie Symmetries and their applications Useful for PhD and postdoc graduates, as well as for all mathematicians and applied researchers who use the powerful concept of Lie symmetries Filled with various examples to aid understanding of the topics
Linear Models and the Relevant Distributions and Matrix Algebra provides in-depth and detailed coverage of the use of linear statistical models as a basis for parametric and predictive inference. It can be a valuable reference, a primary or secondary text in a graduate-level course on linear models, or a resource used (in a course on mathematical statistics) to illustrate various theoretical concepts in the context of a relatively complex setting of great practical importance. Features: Provides coverage of matrix algebra that is extensive and relatively self-contained and does so in a meaningful context Provides thorough coverage of the relevant statistical distributions, including spherically and elliptically symmetric distributions Includes extensive coverage of multiple-comparison procedures (and of simultaneous confidence intervals), including procedures for controlling the k-FWER and the FDR Provides thorough coverage (complete with detailed and highly accessible proofs) of results on the properties of various linear-model procedures, including those of least squares estimators and those of the F test. Features the use of real data sets for illustrative purposes Includes many exercises David Harville served for 10 years as a mathematical statistician in the Applied Mathematics Research Laboratory of the Aerospace Research Laboratories at Wright-Patterson AFB, Ohio, 20 years as a full professor in Iowa State University's Department of Statistics where he now has emeritus status, and seven years as a research staff member of the Mathematical Sciences Department of IBM's T.J. Watson Research Center. He has considerable relevant experience, having taught M.S. and Ph.D. level courses in linear models, been the thesis advisor of 10 Ph.D. graduates, and authored or co-authored two books and more than 80 research articles. His work has been recognized through his election as a Fellow of the American Statistical Association and of the Institute of Mathematical Statistics and as a member of the International Statistical Institute. |
![]() ![]() You may like...
Cyclic Modules and the Structure of…
S.K. Jain, Ashish K. Srivastava, …
Hardcover
R5,490
Discovery Miles 54 900
Krylov Subspace Methods - Principles and…
Joerg Liesen, Zdenek Strakos
Hardcover
R3,619
Discovery Miles 36 190
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,558
Discovery Miles 25 580
|