![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.
This work is at the crossroads of a number of mathematical areas, including algebraic geometry, several complex variables, differential geometry, and representation theory. It is the first book to cover complex tori, among the simplest of complex manifolds, which are important to research in the above areas. The book gives a systematic approach to the theory, presents new results, and includes an up-to-date bibliography.
This monograph presents recursion theory from a generalized point of view centered on the computational aspects of definability. A major theme is the study of the structures of degrees arising from two key notions of reducibility, the Turing degrees and the hyperdegrees, using techniques and ideas from recursion theory, hyperarithmetic theory, and descriptive set theory. The emphasis is on the interplay between recursion theory and set theory, anchored on the notion of definability. The monograph covers a number of fundamental results in hyperarithmetic theory as well as some recent results on the structure theory of Turing and hyperdegrees. It also features a chapter on the applications of these investigations to higher randomness.
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number theory and a review of the prerequisite material, then presents the basic theory of algebraic numbers. The treatment of the subject is classical but the newer approach discussed at the end provides a broader theory to include the arithmetic of algebraic curves over finite fields, and even suggests a theory for studying higher dimensional varieties over finite fields. It leads naturally to the Weil conjecture and some delicate questions in algebraic geometry. About the Author Dr. J. S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published several papers in number theory. For hobbies, he likes to travel and hike. His book, Fundamentals of Linear Algebra, is also published by CRC Press.
This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers."
This unique book's subject is meanders (connected, oriented, non-self-intersecting planar curves intersecting the horizontal line transversely) in the context of dynamical systems. By interpreting the transverse intersection points as vertices and the arches arising from these curves as directed edges, meanders are introduced from the graphtheoretical perspective. Supplementing the rigorous results, mathematical methods, constructions, and examples of meanders with a large number of insightful figures, issues such as connectivity and the number of connected components of meanders are studied in detail with the aid of collapse and multiple collapse, forks, and chambers. Moreover, the author introduces a large class of Morse meanders by utilizing the right and left one-shift maps, and presents connections to Sturm global attractors, seaweed and Frobenius Lie algebras, and the classical Yang-Baxter equation. Contents Seaweed Meanders Meanders Morse Meanders and Sturm Global Attractors Right and Left One-Shifts Connection Graphs of Type I, II, III and IV Meanders and the Temperley-Lieb Algebra Representations of Seaweed Lie Algebras CYBE and Seaweed Meanders
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB(R), and Maple(TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.
This book is an updated and extended version of Completely Positive Matrices (Abraham Berman and Naomi Shaked-Monderer, World Scientific 2003). It contains new sections on the cone of copositive matrices, which is the dual of the cone of completely positive matrices, and new results on both copositive matrices and completely positive matrices.The book is an up to date comprehensive resource for researchers in Matrix Theory and Optimization. It can also serve as a textbook for an advanced undergraduate or graduate course.
Combinatorial Nullstellensatz is a novel theorem in algebra introduced by Noga Alon to tackle combinatorial problems in diverse areas of mathematics. This book focuses on the applications of this theorem to graph colouring. A key step in the applications of Combinatorial Nullstellensatz is to show that the coefficient of a certain monomial in the expansion of a polynomial is nonzero. The major part of the book concentrates on three methods for calculating the coefficients: Alon-Tarsi orientation: The task is to show that a graph has an orientation with given maximum out-degree and for which the number of even Eulerian sub-digraphs is different from the number of odd Eulerian sub-digraphs. In particular, this method is used to show that a graph whose edge set decomposes into a Hamilton cycle and vertex-disjoint triangles is 3-choosable, and that every planar graph has a matching whose deletion results in a 4-choosable graph. Interpolation formula for the coefficient: This method is in particular used to show that toroidal grids of even order are 3-choosable, r-edge colourable r-regular planar graphs are r-edge choosable, and complete graphs of order p+1, where p is a prime, are p-edge choosable. Coefficients as the permanents of matrices: This method is in particular used in the study of the list version of vertex-edge weighting and to show that every graph is (2,3)-choosable. It is suited as a reference book for a graduate course in mathematics.
The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.
The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.
By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.
This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes - to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.
Drawing on rich classroom observations of educators teaching in China and the U.S., this book details an innovative and effective approach to teaching algebra at the elementary level, namely, "teaching through example-based problem solving" (TEPS). Recognizing young children's particular cognitive and developmental capabilities, this book powerfully argues for the importance of infusing algebraic thinking into early grade mathematics teaching and illustrates how this has been achieved by teachers in U.S. and Chinese contexts. Documenting best practice and students' responses to example-based instruction, the text demonstrates that this TEPS approach - which involves the use of worked examples, representations, and deep questions - helps students learn and master fundamental mathematical ideas, making it highly effective in developing algebraic readiness and mathematical understanding. This text will benefit post-graduate students, researchers, and academics in the fields of mathematics, STEM, and elementary education, as well as algebra research more broadly. Those interested in teacher education, classroom practice, and developmental and cognitive psychology will also find this volume of interest.
Linear algebra is an extremely versatile and useful subject. It rewards those who study it with powerful computational tools, lessons about how mathematical theory is built, examples for later study in other classes, and much more. Functional Linear Algebra is a unique text written to address the need for a one-term linear algebra course where students have taken only calculus. It does not assume students have had a proofs course. The text offers the following approaches: More emphasis is placed on the idea of a linear function, which is used to motivate the study of matrices and their operations. This should seem natural to students after the central role of functions in calculus. Row reduction is moved further back in the semester and vector spaces are moved earlier to avoid an artificial feeling of separation between the computational and theoretical aspects of the course. Chapter 0 offers applications from engineering and the sciences to motivate students by revealing how linear algebra is used. Vector spaces are developed over R, but complex vector spaces are discussed in Appendix A.1. Computational techniques are discussed both by hand and using technology. A brief introduction to Mathematica is provided in Appendix A.2. As readers work through this book, it is important to understand the basic ideas, definitions, and computational skills. Plenty of examples and problems are provided to make sure readers can practice until the material is thoroughly grasped. Author Dr. Hannah Robbins is an associate professor of mathematics at Roanoke College, Salem, VA. Formerly a commutative algebraist, she now studies applications of linear algebra and assesses teaching practices in calculus. Outside the office, she enjoys hiking and playing bluegrass bass.
Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.
Scientific Computing with MATLAB (R), Second Edition improves students' ability to tackle mathematical problems. It helps students understand the mathematical background and find reliable and accurate solutions to mathematical problems with the use of MATLAB, avoiding the tedious and complex technical details of mathematics. This edition retains the structure of its predecessor while expanding and updating the content of each chapter. The book bridges the gap between problems and solutions through well-grouped topics and clear MATLAB example scripts and reproducible MATLAB-generated plots. Students can effortlessly experiment with the scripts for a deep, hands-on exploration. Each chapter also includes a set of problems to strengthen understanding of the material.
Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.
Recently, many books on multiobjective programming have been published. However, only a few books have been published, in which multiobjective programming under the randomness and the fuzziness are investigated. On the other hand, several books on multilevel programming have been published, in which multiple decision makers are involved in hierarchical decision situations. In this book, we introduce the latest advances in the field of multiobjective programming and multilevel programming under uncertainty. The reader can immediately use proposed methods to solve multiobjective programming and multilevel programming, which are based on linear programming or convex programming technique. Organization of each capter is summarized as follows. In Chapter 2, multiobjective programming problems with random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 3, multiobjective programming problems with fuzzy random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which not only the uncertainty of fuzzy random variables but also the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 4, multiobjective multilevel programming is discussed, and the interactive algorithms are developed to obtain a satisfactory solution, in which the hierarchical decision structure of multiple decision makers is reflected. In Chapter 5, two kinds of farm planning problems are solved by applying the proposed method, in which cost coefficients of crops are expressed by random variables.
The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.
This book presents a unified algebraic approach to stabilization problems of linear boundary control systems with no assumption on finite-dimensional approximations to the original systems, such as the existence of the associated Riesz basis. A new proof of the stabilization result for linear systems of finite dimension is also presented, leading to an explicit design of the feedback scheme. The problem of output stabilization is discussed, and some interesting results are developed when the observability or the controllability conditions are not satisfied. |
You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
McGraw-Hill Education Algebra I Review…
Sandra Luna McCune
Paperback
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,048
Discovery Miles 10 480
|