![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This book is dedicated to V.A. Yankov's seminal contributions to the theory of propositional logics. His papers, published in the 1960s, are highly cited even today. The Yankov characteristic formulas have become a very useful tool in propositional, modal and algebraic logic. The papers contributed to this book provide the new results on different generalizations and applications of characteristic formulas in propositional, modal and algebraic logics. In particular, an exposition of Yankov's results and their applications in algebraic logic, the theory of admissible rules and refutation systems is included in the book. In addition, the reader can find the studies on splitting and join-splitting in intermediate propositional logics that are based on Yankov-type formulas which are closely related to canonical formulas, and the study of properties of predicate extensions of non-classical propositional logics. The book also contains an exposition of Yankov's revolutionary approach to constructive proof theory. The editors also include Yankov's contributions to history and philosophy of mathematics and foundations of mathematics, as well as an examination of his original interpretation of history of Greek philosophy and mathematics.
This volume highlights the main results of the research performed within the network "Harmonic and Complex Analysis and its Applications" (HCAA), which was a five-year (2007-2012) European Science Foundation Programme intended to explore and to strengthen the bridge between two scientific communities: analysts with broad backgrounds in complex and harmonic analysis and mathematical physics, and specialists in physics and applied sciences. It coordinated actions for advancing harmonic and complex analysis and for expanding its application to challenging scientific problems. Particular topics considered by this Programme included conformal and quasiconformal mappings, potential theory, Banach spaces of analytic functions and their applications to the problems of fluid mechanics, conformal field theory, Hamiltonian and Lagrangian mechanics, and signal processing. This book is a collection of surveys written as a result of activities of the Programme and will be interesting and useful for professionals and novices in analysis and mathematical physics, as well as for graduate students. Browsing the volume, the reader will undoubtedly notice that, as the scope of the Programme is rather broad, there are many interrelations between the various contributions, which can be regarded as different facets of a common theme.
This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves
This introductory book directs the reader to a selection of useful elementary numerical algorithms on a reasonably sound theoretical basis, built up within the text. The primary aim is to develop algorithmic thinking -- emphasizing long living computational concepts over fast changing software issues. The guiding principle is to explain modern numerical analysis concepts applicable in complex scientific computing at much simpler model problems. For example, the two adaptive techniques in numerical quadrature elaborated here carry the germs for either extrapolation methods or multigrid methods in differential equations, which are not treated here. The presentation draws on geometrical intuition wherever appropriate, supported by a large number of illustrations. Numerous exercises are included for further practice and improved understanding. This text will appeal to undergraduate and graduate students as well as researchers in mathematics, computer science, science, and engineering. At the same time it is addressed to practical computational scientists who, via self-study, wish to become acquainted with modern concepts of numerical analysis and scientific computing on an elementary level. Sole prerequisite is undergraduate knowledge in Linear Algebra and Calculus.
This book includes a self-contained approach of the general theory of quadratic forms and integral Euclidean lattices, as well as a presentation of the theory of automorphic forms and Langlands' conjectures, ranging from the first definitions to the recent and deep classification results due to James Arthur. Its connecting thread is a question about lattices of rank 24: the problem of p-neighborhoods between Niemeier lattices. This question, whose expression is quite elementary, is in fact very natural from the automorphic point of view, and turns out to be surprisingly intriguing. We explain how the new advances in the Langlands program mentioned above pave the way for a solution. This study proves to be very rich, leading us to classical themes such as theta series, Siegel modular forms, the triality principle, L-functions and congruences between Galois representations. This monograph is intended for any mathematician with an interest in Euclidean lattices, automorphic forms or number theory. A large part of it is meant to be accessible to non-specialists.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This eighth volume collects authoritative chapters covering several applications of fractional calculus in engineering, life and social sciences, including applications in signal and image analysis, and chaos.
Algebra, Second Edition, by Michael Artin, is ideal for the honors undergraduate or introductory graduate course. The second edition of this classic text incorporates twenty years of feedback and the author's own teaching experience. The text discusses concrete topics of algebra in greater detail than most texts, preparing students for the more abstract concepts; linear algebra is tightly integrated throughout.
The Bittinger Worktext Series changed the face of developmental education with the introduction of objective-based worktexts that presented math one concept at a time. This approach allowed students to understand the rationale behind each concept before practicing the associated skills and then moving on to the next topic. With this revision, Marv Bittinger continues to focus on building success through conceptual understanding, while also supporting students with quality applications, exercises, and new review and study materials to help them apply and retain their knowledge.
An introduction to elementary linear algebra - designed especially for those interested in computer science, business and economics, the natural and social sciences, engineering, or mathematics.
This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The main attention is paid to fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work is focused on algorithms of multiplication, inversion and description of eigenstructure and includes a large number of illustrative examples throughout the different chapters. The first volume consists of four parts. The first part is of a mainly theoretical character introducing and studying the quasiseparable and semiseparable representations of matrices and minimal rank completion problems. Three further completions are treated in the second part. The first applications of the quasiseparable and semiseparable structure are included in the third part where the interplay between the quasiseparable structure and discrete time varying linear systems with boundary conditions play an essential role. The fourth part contains factorization and inversion fast algorithms for matrices via quasiseparable and semiseparable structure. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and the accessible style the text will be useful to engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This seventh volume collects authoritative chapters covering several applications of fractional calculus in in engineering, life, and social sciences, including applications in biology and medicine, mechanics of complex media, economy, and electrical devices.
Reliability is a fundamental criterium in engineering systems. This book shows innovative concepts and applications of mathematics in solving reliability problems. The contents address in particular the interaction between engineers and mathematicians, as well as the cross-fertilization in the advancement of science and technology. It bridges the gap between theory and practice to aid in practical problem-solving in various contexts.
Elayn Martin-Gay's developmental math textbooks and video resources are motivated by her firm belief that every student can succeed. Martin-Gay's focus on the student shapes her clear, accessible writing, inspires her constant pedagogical innovations, and contributes to the popularity and effectiveness of her video resources. This revision of Martin-Gay's algebra series continues her focus on students and what they need to be successful.
Beecher, Penna, and Bittinger's College Algebra is known for enabling students to "see the math" through its focus on visualization and early introduction to functions. With the Fourth Edition, the authors continue to innovate by incorporating more ongoing review to help students develop their understanding and study effectively. Mid-chapter Mixed Review exercise sets have been added to give students practice in synthesizing the concepts, and new Study Guide summaries provide built-in tools to help them prepare for tests. MyMathLab has been expanded so that the online content is even more integrated with the text's approach, with the addition of Vocabulary, Synthesis, and Mid-chapter Mixed Review exercises from the text, as well as example-based videos created by the authors.
The Tobey/Slater/Blair/Crawford series builds essential skills one at a time by breaking the mathematics down into manageable pieces. This practical "building block" organization makes it easy for students to understand each topic and gain confidence as they move through each section. Students will find many opportunities to check and reinforce their understanding of concepts throughout the text and its MyMathLab course. With this revision, the author team has added a new Math Coach feature that provides students with an office hour experience by helping them to avoid commonly made mistakes. With Tobey/Slater/Blair/Crawford, students have a tutor, a study companion, and now a coach, with them every step of the way.
The Tobey/Slater/Blair/Crawford series builds essential skills one at a time by breaking the mathematics down into manageable pieces. This practical "building block" organization makes it easy for students to understand each topic and gain confidence as they move through each section. Students will find many opportunities to check and reinforce their understanding of concepts throughout the text and its MyMathLab course. With this revision, the author team has added a new Math Coach feature that provides students with an office hour experience by helping them to avoid commonly made mistakes. With Tobey/Slater/Blair/Crawford, students have a tutor, a study companion, and now a coach, with them every step of the way.
Beecher, Penna, and Bittinger's Algebra and Trigonometry is known for enabling students to "see the math" through its focus on visualization and early introduction to functions. With the Fourth Edition, the authors continue to innovate by incorporating more ongoing review to help students develop their understanding and study effectively. Mid-chapter Mixed Review exercise sets have been added to give students practice in synthesizing the concepts, and new Study Guide summaries provide built-in tools to help them prepare for tests. MyMathLab has been expanded so that the online content is even more integrated with the text's approach, with the addition of Vocabulary, Synthesis, and Mid-chapter Mixed Review exercises from the text, as well as example-based videos created by the authors.
College Algebra in Context, Fourth Edition is ideal for students majoring in business, social sciences, and life sciences. The authors use modeling, applications, and real-data problems to develop skills, giving students the practice they need to become adept problem solvers in their future courses and careers. This revision maintains the authors' focus on applying math in the real world through updated real-data applications. Features such as Group Activities and Extended Applications promote collaborative learning, improve communication and research skills, and foster critical thinking. MyMathLab has increased exercise coverage, pre-built sample assignments, and Ready-to-Go course options that make it easier to get started with online homework.
Is there anything more beautiful than an "A" in Algebra? Not to the Lial team! Marge Lial, John Hornsby, and Terry McGinnis write their textbooks and accompanying resources with one goal in mind: giving students and teachers all the tools they need to achieve success. With this revision, the Lial team has further refined the presentation and exercises throughout the text. They offer several exciting new resources for students and teachers that will provide extra help when needed, regardless of the learning environment (classroom, lab, hybrid, online, etc)-new study skills activities in the text, an expanded video program available in MyMathLab and on the Video Resources on DVD, and more!
Linear Algebra and Differential Equations has been written for a one-semester combined linear algebra and differential equations course, yet it contains enough material for a two-term sequence in linear algebra and differential equations. By introducing matrices, determinants, and vector spaces early in the course, the authors are able to fully develop the connections between linear algebra and differential equations. The book is flexible enough to be easily adapted to fit most syllabi, including separate courses that that cover linear algebra in the first followed by differential equations in the second. Technology is fully integrated where appropriate, and the text offers fresh and relevant applications to motivate student interest.
This book presents a systematic exposition of the various applications of closure operations in commutative and noncommutative algebra. In addition to further advancing multiplicative ideal theory, the book opens doors to the various uses of closure operations in the study of rings and modules, with emphasis on commutative rings and ideals. Several examples, counterexamples, and exercises further enrich the discussion and lend additional flexibility to the way in which the book is used, i.e., monograph or textbook for advanced topics courses.
Elayn Martin-Gay's developmental math textbooks and video resources are motivated by her firm belief that every student can succeed. Martin-Gay's focus on the student shapes her clear, accessible writing, inspires her constant pedagogical innovations, and contributes to the popularity and effectiveness of her video resources. This revision of Martin-Gay's algebra series continues her focus on students and what they need to be successful.
Features Written to be self-contained. Ideal as a primary textbook for an undergraduate course in linear algebra. Applications of the general theory which are of interest to disciplines outside of mathematics, such as engineering. |
You may like...
GeoComputational Modelling - Techniques…
Manfred M. Fischer, Yee Leung
Hardcover
R2,810
Discovery Miles 28 100
Nonprofits in Urban America
Cynthia Jackson-Elmoore, Richard C. Hula
Hardcover
Total Quality Management and Operational…
John S Oakland, Michael A. Turner, …
Paperback
Loss - Poems To Better Weather The Many…
Donna Ashworth
Hardcover
(1)
|