![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This book addresses Birkhoff and Mal'cev's problem of describing subquasivariety lattices. The text begins by developing the basics of atomic theories and implicational theories in languages that may, or may not, contain equality. Subquasivariety lattices are represented as lattices of closed algebraic subsets of a lattice with operators, which yields new restrictions on the equaclosure operator. As an application of this new approach, it is shown that completely distributive lattices with a dually compact least element are subquasivariety lattices. The book contains many examples to illustrate these principles, as well as open problems. Ultimately this new approach gives readers a set of tools to investigate classes of lattices that can be represented as subquasivariety lattices.
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data. The second edition surveys the last achievements in the field of wetting of real surfaces, including new chapters devoted to the wetting of lubricated and gradient surfaces and reactive wetting, which have seen the rapid progress in the last decade. Additional reading, surveying the progress across the entire field of wetting of real surfaces, is suggested to the reader. Contents What is surface tension? Wetting of ideal surfaces Contact angle hysteresis Dynamics of wetting Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie Models Superhydrophobicity, superhydrophilicity, and the rose petal effect Wetting transitions on rough surfaces Electrowetting and wetting in the presence of external fields Nonstick droplets Wetting of lubricated surfaces
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.
This popular textbook was thoughtfully and specifically tailored to introducing undergraduate students to linear algebra. The second edition has been carefully revised to improve upon its already successful format and approach. In particular, the author added a chapter on quadratic forms, making this one of the most comprehensive introductory texts on linear algebra.
Reservation procedures constitute the core of many popular data transmission protocols. They consist of two steps: A request phase in which a station reserves the communication channel and a transmission phase in which the actual data transmission takes place. Such procedures are often applied in communication networks that are characterised by a shared communication channel with large round-trip times. In this book, we propose queuing models for situations that require a reservation procedure and validate their applicability in the context of cable networks. We offer various mathematical models to better understand the performance of these reservation procedures. The book covers four key performance models, and modifications to these: Contention trees, the repairman model, the bulk service queue, and tandem queues. The relevance of this book is not limited to reservation procedures and cable networks, and performance analysts from a variety of areas may benefit, as all models have found application in other fields as well.
X Kochendorffer, L.A. Kalu: lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed."
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras," which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
This proceedings volume documents the contributions presented at the CONIAPS XXVII international Conference on Recent Advances in Pure and Applied Algebra. The entries focus on modern trends and techniques in various branches of pure and applied Algebra and highlight their applications in coding theory, cryptography, graph theory, and fuzzy theory.
This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.
The modern theory of algebras of binary relations, reformulated by
Tarski as an abstract, algebraic, equational theory of relation
algebras, has considerable mathematical significance, with
applications in various fields: e.g., in computer
science---databases, specification theory, AI---and in
anthropology, economics, physics, and philosophical logic.
This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The main attention is paid to fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work is focused on algorithms of multiplication, inversion and description of eigenstructure and includes a large number of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods to compute eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms being derived also for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable of any order representations is studied in the third part. This method is then used in the last part in order to get a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and the accessible style the text will be useful to engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
For courses in Advanced Linear Algebra. This top-selling, theorem-proof text presents a careful treatment of the principle topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.
I am pleased to participate in this Summer School and look forward to sharing some ideas with you over the next few days. At the outset I would like to describe the approach I will take in 1 presenting the material. I aim to present the material in a non rigorous way and hopefully in an intuitive manner. At the same time I will draw attention to some of the major technical problems. It is pitched at someone who is unfamiliar with the area. The results presented here are unfamiliar to actuaries and insurance mathematicians although they are well known in some other fields. During the next few minutes I will make some preliminary comments. The purpose of these comments is to place the lectures in perspective and motivate the upcoming material. After this I will outline briefly the topics to be covered during the rest of this lecture and in the lectures that will follow. One of the central themes of these lectures is RISK-SHARING. Risk-sharing is a common response to uncertainty. Such uncertainty can arise from natural phenomena or social causes. One particular form of risk-sharing is the insurance mechanism. I will be dealing with models which have a natural application in the insurance area but they have been applied in other areas as well. In fact some of the paradigms to be discussed have the capacity to provide a unified treatment of problems in diverse fields."
The term "stereotype space" was introduced in 1995 and denotes a category of locally convex spaces with surprisingly elegant properties. Its study gives an unexpected point of view on functional analysis that brings this fi eld closer to other main branches of mathematics, namely, to algebra and geometry. This volume contains the foundations of the theory of stereotype spaces, with accurate definitions, formulations, proofs, and numerous examples illustrating the interaction of this discipline with the category theory, the theory of Hopf algebras, and the four big geometric disciplines: topology, differential geometry, complex geometry, and algebraic geometry.
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization.
This classic book provides a broad introduction to homological algebra, including a comprehensive set of exercises. Since publication of the first edition homological algebra has found a large number of applications in many different fields. Today, it is a truly indispensable tool in fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In this new edition, the authors have selected a number of different topics and describe some of the main applications and results to illustrate the range and depths of these developments. The background assumes little more than knowledge of the algebraic theories groups and of vector spaces over a field.
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
This volume contains both invited lectures and contributed talks presented at the meeting on Total Positivity and its Applications held at the guest house of the University of Zaragoza in Jaca, Spain, during the week of September 26-30, 1994. There were present at the meeting almost fifty researchers from fourteen countries. Their interest in thesubject of Total Positivity made for a stimulating and fruitful exchange of scientific information. Interest to participate in the meeting exceeded our expectations. Regrettably, budgetary constraints forced us to restriet the number of attendees. Professor S. Karlin, of Stanford University, who planned to attend the meeting had to cancel his participation at the last moment. Nonetheless, his almost universal spiritual presence energized and inspired all of us in Jaca. More than anyone, he influenced the content, style and quality of the presentations given at the meeting. Every article in these Proceedings (except some by Karlin hirnself) references his influential treatise Total Positivity, Volume I, Stanford University Press, 1968. Since its appearance, this book has intrigued and inspired the minds of many researchers (one of us, in his formative years, read the galley proofs and the other of us first doubted its value but then later became its totally committed disciple). All of us present at the meeting encourage Professor Karlin to return to the task of completing the anxiously awaited Volume 11 of Total Positivity.
An invaluable summary of research work done in the period from 1978 to the present
This textbook on linear algebra includes the key topics of the
subject that most advanced undergraduates need to learn before
entering graduate school. All the usual topics, such as complex
vector spaces, complex inner products, the Spectral theorem for
normal operators, dual spaces, the minimal polynomial, the Jordan
canonical form, and the rational canonical form, are covered, along
with a chapter on determinants at the end of the book. In addition,
there is material throughout the text on linear differential
equations and how it integrates with all of the important concepts
in linear algebra.
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,089
Discovery Miles 30 890
Theory and Applications of Ordered Fuzzy…
Piotr Prokopowicz, Jacek Czerniak, …
Hardcover
R1,497
Discovery Miles 14 970
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
|