Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > General
In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
This is the first book to present an up-to-date and self-contained account of Algebraic Complexity Theory that is both comprehensive and unified. Requiring of the reader only some basic algebra and offering over 350 exercises, it is well-suited as a textbook for beginners at graduate level. With its extensive bibliography covering about 500 research papers, this text is also an ideal reference book for the professional researcher. The subdivision of the contents into 21 more or less independent chapters enables readers to familiarize themselves quickly with a specific topic, and facilitates the use of this book as a basis for complementary courses in other areas such as computer algebra.
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
This unique textbook presents a course on computational linear algebra. Offers many unique applications. MATLAB is used throughout.
"There are useful discussions of two nonstandard topics which caught my eye, the method of least squares and Markov processes, consistent with the author's concern for the applications and the expected readership, which render the text useful for business, economics and social science students as well as those in physical sciences and engineering ... the book has great value for self study as well as adoption as a classroom text ... By all means adopt Robinson's text and enjoy spreading the gospel of linear algebra." Frank B CannonitoUniversity of California, Irvine "... it is very carefully written, both from the point of view of mathematical content and style, and readability ... It should therefore be very suitable as a course book as well as for self-tuition." Mathematics Abstracts, Germany
The moduli space Mg of curves of fixed genus g - that is, the algebraic variety that parametrizes all curves of genus g - is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.
This volume contains refereed papers related to the lectures and talks given at a conference held in Siena (Italy) in June 2004. Also included are research papers that grew out of discussions among the participants and their collaborators. All the papers are research papers, but some of them also contain expository sections which aim to update the state of the art on the classical subject of special projective varieties and their applications and new trends like phylogenetic algebraic geometry. The topic of secant varieties and the classification of defective varieties is central and ubiquitous in this volume. Besides the intrinsic interest of the subject, it turns out that it is also relevant in other fields of mathematics like expressions of polynomials as sums of powers, polynomial interpolation, rank tensor computations, Bayesian networks, algebraic statistics and number theory.
Further Algebra and Applications is the second volume of a new and revised edition of P.M. Cohn's classic three-volume text "Algebra" which is widely regarded as one of the most outstanding introductory algebra textbooks. For this edition, the text has been reworked and updated into two self-contained, companion volumes, covering advanced topics in algebra for second- and third-year undergraduate and postgraduate research students. The first volume, "Basic Algebra", covers the important results of algebra; this companion volume focuses on the applications and covers the more advanced parts of topics such as: - groups and algebras - homological algebra - universal algebra - general ring theory - representations of finite groups - coding theory - languages and automata The author gives a clear account, supported by worked examples, with full proofs. There are numerous exercises with occasional hints, and some historical remarks.
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.
Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of the Keller-box method to nonlinear problems. The first half of the book addresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authors give a number of examples of coupled nonlinear problems that have been solved by means of the Keller-box method. The particular area of focus is on fluid flow problems governed by nonlinear equation.
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.
In recent years there has been a remarkable convergence of interest in programming languages based on ALGOL 60. Researchers interested in the theory of procedural and object-oriented languages discovered that ALGOL 60 shows how to add procedures and object classes to simple imperative languages in a general and clean way. And, on the other hand, researchers interested in purely functional languages discovered that ALGOL 60 shows how to add imperative mechanisms to functional languages in a way that does not compromise their desirable properties. Unfortunately, many of the key works in this field have been rather hard to obtain. The primary purpose of this collection is to make the most significant material on ALGoL-like languages conveniently available to graduate students and researchers. Contents Introduction to Volume 1 1 Part I Historical Background 1 Part n Basic Principles 3 Part III Language Design 5 Introduction to Volume 2 6 Part IV Functor-Category Semantics 7 Part V Specification Logic 7 Part VI Procedures and Local Variables 8 Part vn Interference, Irreversibility and Concurrency 9 Acknowledgements 11 Bibliography 11 Introduction to Volume 1 This volume contains historical and foundational material, and works on lan guage design. All of the material should be accessible to beginning graduate students in programming languages and theoretical Computer Science."
D. Hilbert, in his famous program, formulated many open mathematical problems which were stimulating for the development of mathematics and a fruitful source of very deep and fundamental ideas. During the whole 20th century, mathematicians and specialists in other fields have been solving problems which can be traced back to Hilbert's program, and today there are many basic results stimulated by this program. It is sure that even at the beginning of the third millennium, mathematicians will still have much to do. One of his most interesting ideas, lying between mathematics and physics, is his sixth problem: To find a few physical axioms which, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible. We try to present some ideas inspired by Hilbert's sixth problem and give some partial results which may contribute to its solution. In the Thirties the situation in both physics and mathematics was very interesting. A.N. Kolmogorov published his fundamental work Grundbegriffe der Wahrschein lichkeitsrechnung in which he, for the first time, axiomatized modern probability theory. From the mathematical point of view, in Kolmogorov's model, the set L of ex perimentally verifiable events forms a Boolean a-algebra and, by the Loomis-Sikorski theorem, roughly speaking can be represented by a a-algebra S of subsets of some non-void set n."
This book and the following second volume is an introduction into
modern algebraic geometry. In the first volume the methods of
homological algebra, theory of sheaves, and sheaf cohomology are
developed. These methods are indispensable for modern algebraic
geometry, but they are also fundamental for other branches of
mathematics and of great interest in their own.
This Computer Algebra Handbook gives a comprehensive snapshot of this field at the intersection of mathematics and computer science with applications in physics, engineering and education. It contains both theory, systems and practice of the discipline of symbolic computation and computer algebra. With the wide angle of a "lense" of about 200 contributors it shows the state of computer algebra research and applications in the last decade of the twentieth century. Aside from discussing the foundations of computer algebra, the handbook describes 67 software systems and packages that perform tasks in symbolic computation. In addition, the handbook offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education. The book is accompanied by a CD-ROM, containing demo versions for most of the computer algebra systems treated in the book, as well as links to further information on some of these. This book will be very useful as a reference to graduate students and researchers in symbolic computation and computer algebra.
Of interest to everybody working on perturbation theory in differential equations, this book requires only a standard mathematical background in engineering and does not require reference to the special literature. Topics covered include: matrix perturbation theory; systems of ordinary differential equations with small parameters; reconstruction and equations in partial derivatives. While boundary problems are not discussed, the book is clearly illustrated by numerous examples.
This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part one is devoted to residue classes and quadratic residues. In part two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. part three is devoted to Kummer¿s theory of cyclotomic fields, and includes Bernoulli numbers and the proof of Fermat¿s Last Theorem for regular prime exponents. Finally, in part four, the emphasis is on analytical methods and it includes Dirichlet¿s Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics, as suggested at the end of the book.
This book presents an extensive overview of logarithmic integral operators with kernels depending on one or several complex parameters. Solvability of corresponding boundary value problems and determination of characteristic numbers are analyzed by considering these operators as operator-value functions of appropriate complex (spectral) parameters. Therefore, the method serves as a useful addition to classical approaches. Special attention is given to the analysis of finite-meromorphic operator-valued functions, and explicit formulas for some inverse operators and characteristic numbers are developed, as well as the perturbation technique for the approximate solution of logarithmic integral equations. All essential properties of the generalized single- and double-layer potentials with logarithmic kernels and Green's potentials are considered. Fundamentals of the theory of infinite-matrix summation operators and operator-valued functions are presented, including applications to the solution of logarithmic integral equations. Many boundary value problems for the two-dimensional Helmholtz equation are discussed and explicit formulas for Green's function of canonical domains with separated logarithmic singularities are presented.
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
Building on the author's previous edition on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996), this book offers a refreshingly concise text suitable for a standard course in linear algebra, presenting a carefully selected array of essential topics that can be thoroughly covered in a single semester. Although the exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, it notably deviates in providing an early emphasis on the geometric foundations of linear algebra. This gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts covered later in the course. The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book. Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi-particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of PrA1/4fer rings is discussed from the geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of PrA1/4fer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties). The book concludes with a brief chapter discussing the bibliographic references available on the material presented, and a short history of the major developments within the field.
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory. |
You may like...
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,609
Discovery Miles 56 090
|