![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
Following an initiative of the late Hans Zassenhaus in 1965, the Departments of Mathematics at The Ohio State University and Denison University organize conferences in combinatorics, group theory, and ring theory. Between May 18-21, 2000, the 25th conference of this series was held. Usually, there are twenty to thirty invited 20-minute talks in each of the three main areas. However, at the 2000 meeting, the combinatorics part of the conference was extended, to honor the 65th birthday of Professor Dijen Ray-Chaudhuri. This volulme is the proceedings of this extension. Most of the papers are in coding theory and design theory, reflecting the major interest of Professor Ray-Chaudhuri, but there are articles on association schemes, algebraic graph theory, combinatorial geometry, and network flows as well. There are four surveys and seventeen research articles, and all of these went through a thorough refereeing process. The volume is primarily recommended for researchers and graduate students interested in new developments in coding theory and design theory.
This book contains nine well-organized survey articles by leading researchers in positivity, with a strong emphasis on functional analysis. It provides insight into the structure of classical spaces of continuous functions, f-algebras, and integral operators, but also contains contributions to modern topics like vector measures, operator spaces, ordered tensor products, non-commutative Banach function spaces, and frames. Contributors: B. Banerjee, D.P. Blecher, K. Boulabiar, Q. Bu, G. Buskes, G.P. Curbera, M. Henriksen, A.G. Kusraev, J. Marti-nez, B. de Pagter, W.J. Ricker, A.R. Schep, A. Triki, A.W. Wickstead
This book is an introduction to the theory of complex manifolds. The authors¿ intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involving sheaves, coherence, and higher-dimensional cohomology have been completely avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Nevertheless, deep results can be proved. The book can be used as a first introduction to several complex variables as well as a reference for the expert.
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made.The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.
Clifford, or geometric algebra, provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This book introduces the concepts and framework of Clifford algebra and provides a rich source of examples of how to work with this formalism.
In modern society services and support provided by computer-based systems have become ubiquitous and indeed have started to fund amentally alter the way people conduct their business. Moreover, it has become apparent that among the great variety of computer technologies available to potential users a crucial role will be played by concurrent systems. The reason is that many commonly occurring phenomena and computer applications are highly con current : typical examples include control systems, computer networks, digital hardware, business computing, and multimedia systems. Such systems are characterised by ever increasing complexity, which results when large num bers of concurrently active components interact. This has been recognised and addressed within the computing science community. In particular, sev eral form al models of concurrent systems have been proposed, studied, and applied in practice. This book brings together two of the most widely used formalisms for de scribing and analysing concurrent systems: Petri nets and process algebras. On the one hand , process algebras allow one to specify and reason about the design of complex concurrent computing systems by means of algebraic operators corresponding to common programming constructs. Petri nets, on the other hand, provide a graphical representation of such systems and an additional means of verifying their correctness efficiently, as well as a way of expressing properties related to causality and concurrency in system be haviour.
This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.
This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work shops and symposia in previous years. The title of this book came from that of the conference, and the authors were participants of those meet All of the articles here were critically refereed by experts. Some of ings. these articles give well prepared surveys on branches of research areas, and many articles aim to bear the latest research results accompanied with carefully written expository introductions. When we started our re earch project, we picked up three areas to investigate under the key word "Galois groups"; namely, "generic poly nomials" to be applied to number theory, "Galois coverings of algebraic curves" to study new type of representations of absolute Galois groups, and explicitly described "Shimura varieties" to understand well the Ga lois structures of some interesting polynomials including Brumer's sextic for the alternating group of degree 5. The topics of the articles in this volume are widely spread as a result. At a first glance, some readers may think this book somewhat unfocussed."
Computational intelligence (CI) lies at the interface between engineering and computer science; control engineering, where problems are solved using computer-assisted methods. Thus, it can be regarded as an indispensable basis for all artificial intelligence (AI) activities. This book collects surveys of most recent theoretical approaches focusing on fuzzy systems, neurocomputing, and nature inspired algorithms. It also presents surveys of up-to-date research and application with special focus on fuzzy systems as well as on applications in life sciences and neuronal computing.
The book contains seven refereed research papers on locally compact quantum groups and groupoids by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg from February 21 to February 23, 2002. Topics covered are: various constructions of locally compact quantum groups and their multiplicative unitaries; duality theory for locally compact quantum groups; combinatorial quantization of flat connections associated with SL(2,c); quantum groupoids, especially coming from Depth 2 Extensions of von Neumann algebras, C*-algebras and Rings. Many mathematical results are motivated by problems in theoretical physics. Historical remarks set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research in which great progress has been achieved in the last few years, with new ties to many other areas of mathematics and physics.
Do formulas exist for the solution to algebraical equations in one variable of any degree like the formulas for quadratic equations? The main aim of this book is to give new geometrical proof of Abel's theorem, as proposed by Professor V.I. Arnold. The theorem states that for general algebraical equations of a degree higher than 4, there are no formulas representing roots of these equations in terms of coefficients with only arithmetic operations and radicals. A secondary, and more important aim of this book, is to acquaint the reader with two very important branches of modern mathematics: group theory and theory of functions of a complex variable. This book also has the added bonus of an extensive appendix devoted to the differential Galois theory, written by Professor A.G. Khovanskii. As this text has been written assuming no specialist prior knowledge and is composed of definitions, examples, problems and solutions, it is suitable for self-study or teaching students of mathematics, from high school to graduate.
The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
Shape theory is an extension of homotopy theory from the realm of CW-complexes to arbitrary spaces. Besides applications in topology, it has interesting applications in various other areas of mathematics, especially in dynamical systems and C*-algebras. Strong shape is a refinement of ordinary shape with distinct advantages over the latter. Strong homology generalizes Steenrod homology and is an invariant of strong shape. The book gives a detailed account based on approximation of spaces by polyhedra (ANR's) using the technique of inverse systems. It is intended for researchers and graduate students. Special care is devoted to motivation and bibliographic notes.
This is an updated English translation of "Cohomologie Galoisienne", published more than 30 years ago as one of the very first Lecture Notes in Mathematics. It includes a reproduction of an influential paper of R. Steinberg, together with some new material and an expanded bibliography.
This book offers an essential review of central theories, current research and applications in the field of numerical representations of ordered structures. It is intended as a tribute to Professor Ghanshyam B. Mehta, one of the leading specialists on the numerical representability of ordered structures, and covers related applications to utility theory, mathematical economics, social choice theory and decision-making. Taken together, the carefully selected contributions provide readers with an authoritative review of this research field, as well as the knowledge they need to apply the theories and methods in their own work.
Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.
Based on lectures given at Claremont McKenna College, this text constitutes a substantial, abstract introduction to linear algebra. The presentation emphasizes the structural elements over the computational - for example by connecting matrices to linear transformations from the outset - and prepares the student for further study of abstract mathematics. Uniquely among algebra texts at this level, it introduces group theory early in the discussion, as an example of the rigorous development of informal axiomatic systems.
This concise, fast-paced text introduces the concepts and applications behind plane networks. It presents fundamental material from linear algebra and differential equations, and offers several different applications of the continuous theory. Practical problems, supported by MATLAB files, underscore the theory; additional material can be downloaded from the author's website.
The Influence Line Approach to the Analysis of Rigid Frames offers a simple method of analysis of indeterminate structures. It is original and independent of other methods. The author derived these equations by applying an algebraic rather than an arithmetical method of distribution of fixed-end moments. His method is fully explained and illustrated by worked examples. The equations listed in the Tables in The Influence Line Approach to the Analysis of Rigid Frames offer a simple approach to the analysis of rigid frames, including building frames, rendering them statically determinate for any system of loading, static or moving and including the self weight of a structure. Particularly useful aspects to the reader are:
The fusion of algebra, analysis and geometry, and their application to real world problems, have been dominant themes underlying mathematics for over a century. Geometric algebras, introduced and classified by Clifford in the late 19th century, have played a prominent role in this effort, as seen in the mathematical work of Cartan, Brauer, Weyl, Chevelley, Atiyah, and Bott, and in applications to physics in the work of Pauli, Dirac and others. One of the most important applications of geometric algebras to geometry is to the representation of groups of Euclidean and Minkowski rotations. This aspect and its direct relation to robotics and vision will be discussed in several chapters of this multi-authored textbook, which resulted from the ASI meeting. Moreover, group theory, beginning with the work of Burnside, Frobenius and Schur, has been influenced by even more general problems. As a result, general group actions have provided the setting for powerful methods within group theory and for the use of groups in applications to physics, chemistry, molecular biology, and signal processing. These aspects, too, will be covered in detail. With the rapidly growing importance of, and ever expanding conceptual and computational demands on signal and image processing in remote sensing, computer vision, medical image processing, and biological signal processing, and on neural and quantum computing, geometric algebras, and computational group harmonic analysis, the topics of the book have emerged as key tools. The list of authors includes many of the world's leading experts in the development of new algebraic modeling and signal representation methodologies, novel Fourier-based andgeometric transforms, and computational algorithms required for realizing the potential of these new application fields.
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, Rome, in 2012. The conference gathered virtually all the main specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book includes both extended abstracts of the conference papers and new original works related to the theme of the conference.
This volume begins with a description of Alladi Ramakrishnan's remarkable scientific career and his grand vision that led to the creation of The Institute of Mathematical Sciences (MATSCIENCE), in Madras (now Chennai), India, in 1962. The lists of his research publications, his PhD students, and other relevant facts relating to his eventful career are included. The inclusion of both research and survey articles by leading mathematicians, statisticians, and physicists who got to know Alladi Ramakrishnan over the years and admired his significant contributions to research and to the scientific profession, have been written and dedicated in this volume to Ramakrishnan's memory.
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
R2,492
Discovery Miles 24 920
Linear Algebra - Pearson New…
John B. Fraleigh, Raymond Beauregard
Paperback
R2,508
Discovery Miles 25 080
Elementary Treatise on Mechanics - for…
William G (William Guy) 1820- Peck
Hardcover
R938
Discovery Miles 9 380
|