![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This is an introduction to Galois Theory along the lines of Galois 's Memoir on the Conditions for Solvability of Equations by Radicals. It puts Galois 's ideas into historical perspective by tracing their antecedents in the works of Gauss, Lagrange, Newton, and even the ancient Babylonians. It also explains the modern formulation of the theory. It includes many exercises, with their answers, and an English translation of Galois 's memoir.
Further Algebra and Applications is the second volume of a new and revised edition of P.M. Cohn's classic three-volume text "Algebra" which is widely regarded as one of the most outstanding introductory algebra textbooks. For this edition, the text has been reworked and updated into two self-contained, companion volumes, covering advanced topics in algebra for second- and third-year undergraduate and postgraduate research students. The first volume, "Basic Algebra", covers the important results of algebra; this companion volume focuses on the applications and covers the more advanced parts of topics such as: - groups and algebras - homological algebra - universal algebra - general ring theory - representations of finite groups - coding theory - languages and automata The author gives a clear account, supported by worked examples, with full proofs. There are numerous exercises with occasional hints, and some historical remarks.
Algebraic K-theory is a modern branch of algebra which has many important applications in fundamental areas of mathematics connected with algebra, topology, algebraic geometry, functional analysis and algebraic number theory. Methods of algebraic K-theory are actively used in algebra and related fields, achieving interesting results. This book presents the elements of algebraic K-theory, based essentially on the fundamental works of Milnor, Swan, Bass, Quillen, Karoubi, Gersten, Loday and Waldhausen. It includes all principal algebraic K-theories, connections with topological K-theory and cyclic homology, applications to the theory of monoid and polynomial algebras and in the theory of normed algebras. This volume will be of interest to graduate students and research mathematicians who want to learn more about K-theory.
In recent years there has been a remarkable convergence of interest in programming languages based on ALGOL 60. Researchers interested in the theory of procedural and object-oriented languages discovered that ALGOL 60 shows how to add procedures and object classes to simple imperative languages in a general and clean way. And, on the other hand, researchers interested in purely functional languages discovered that ALGOL 60 shows how to add imperative mechanisms to functional languages in a way that does not compromise their desirable properties. Unfortunately, many of the key works in this field have been rather hard to obtain. The primary purpose of this collection is to make the most significant material on ALGoL-like languages conveniently available to graduate students and researchers. Contents Introduction to Volume 1 1 Part I Historical Background 1 Part n Basic Principles 3 Part III Language Design 5 Introduction to Volume 2 6 Part IV Functor-Category Semantics 7 Part V Specification Logic 7 Part VI Procedures and Local Variables 8 Part vn Interference, Irreversibility and Concurrency 9 Acknowledgements 11 Bibliography 11 Introduction to Volume 1 This volume contains historical and foundational material, and works on lan guage design. All of the material should be accessible to beginning graduate students in programming languages and theoretical Computer Science."
Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.
Of interest to everybody working on perturbation theory in differential equations, this book requires only a standard mathematical background in engineering and does not require reference to the special literature. Topics covered include: matrix perturbation theory; systems of ordinary differential equations with small parameters; reconstruction and equations in partial derivatives. While boundary problems are not discussed, the book is clearly illustrated by numerous examples.
D. Hilbert, in his famous program, formulated many open mathematical problems which were stimulating for the development of mathematics and a fruitful source of very deep and fundamental ideas. During the whole 20th century, mathematicians and specialists in other fields have been solving problems which can be traced back to Hilbert's program, and today there are many basic results stimulated by this program. It is sure that even at the beginning of the third millennium, mathematicians will still have much to do. One of his most interesting ideas, lying between mathematics and physics, is his sixth problem: To find a few physical axioms which, similar to the axioms of geometry, can describe a theory for a class of physical events that is as large as possible. We try to present some ideas inspired by Hilbert's sixth problem and give some partial results which may contribute to its solution. In the Thirties the situation in both physics and mathematics was very interesting. A.N. Kolmogorov published his fundamental work Grundbegriffe der Wahrschein lichkeitsrechnung in which he, for the first time, axiomatized modern probability theory. From the mathematical point of view, in Kolmogorov's model, the set L of ex perimentally verifiable events forms a Boolean a-algebra and, by the Loomis-Sikorski theorem, roughly speaking can be represented by a a-algebra S of subsets of some non-void set n."
Geometric algebra has established itself as a powerful and valuable mathematical tool for solving problems in computer science, engineering, physics, and mathematics. The articles in this volume, written by experts in various fields, reflect an interdisciplinary approach to the subject, and highlight a range of techniques and applications. Relevant ideas are introduced in a self-contained manner and only a knowledge of linear algebra and calculus is assumed. Features and Topics: * The mathematical foundations of geometric algebra are explored * Applications in computational geometry include models of reflection and ray-tracing and a new and concise characterization of the crystallographic groups * Applications in engineering include robotics, image geometry, control-pose estimation, inverse kinematics and dynamics, control and visual navigation * Applications in physics include rigid-body dynamics, elasticity, and electromagnetism * Chapters dedicated to quantum information theory dealing with multi-particle entanglement, MRI, and relativistic generalizations Practitioners, professionals, and researchers working in computer science, engineering, physics, and mathematics will find a wide range of useful applications in this state-of-the-art survey and reference book. Additionally, advanced graduate students interested in geometric algebra will find the most current applications and methods discussed.
This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.
This Computer Algebra Handbook gives a comprehensive snapshot of this field at the intersection of mathematics and computer science with applications in physics, engineering and education. It contains both theory, systems and practice of the discipline of symbolic computation and computer algebra. With the wide angle of a "lense" of about 200 contributors it shows the state of computer algebra research and applications in the last decade of the twentieth century. Aside from discussing the foundations of computer algebra, the handbook describes 67 software systems and packages that perform tasks in symbolic computation. In addition, the handbook offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education. The book is accompanied by a CD-ROM, containing demo versions for most of the computer algebra systems treated in the book, as well as links to further information on some of these. This book will be very useful as a reference to graduate students and researchers in symbolic computation and computer algebra.
This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part one is devoted to residue classes and quadratic residues. In part two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. part three is devoted to Kummer¿s theory of cyclotomic fields, and includes Bernoulli numbers and the proof of Fermat¿s Last Theorem for regular prime exponents. Finally, in part four, the emphasis is on analytical methods and it includes Dirichlet¿s Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics, as suggested at the end of the book.
The conference on Ordered Algebraic Structures held in Curat;ao, from the 26th of June through the 30th of June, 1995, at the Avila Beach Hotel, marked the eighth year of ac tivities by the Caribbean Mathematics Foundation (abbr. CMF), which was the principal sponsor of this conference. CMF was inaugurated in 1988 with a conference on Ordered Algebraic Structures. During the years between these two conferences the field has changed sufficiently, both from my point of view and, I believe, that of my co-organizer, W. Charles Holland, to make one wonder about the label "Ordered Algebraic Structures" itself. We recognized this from the start, and right away this conference carried a subtitle, or, if one prefers, an agenda: we concentrated on the one hand, on traditional themes in the theory of ordered groups, including model-theoretic aspects, and, on the other hand, on matters in which topology (more precisely C(X)-style topology) and category theory would play a prominent role. Plainly, ordered algebra has many faces, and it is becoming increas ingly difficult to organize an intimate conference, such as the ones encouraged in the series sponsored by CMF, in this area on a broad set of themes. These proceedings reflect, accurately we think, the spirit of the conferees, but it is not a faithful record of the papers presented at the conference."
Geometric constructions have been a popular part of mathematics throughout history. The first chapter here is informal and starts from scratch, introducing all the geometric constructions from high school that have been forgotten or were never learned. The second chapter formalises Plato's game, and examines problems from antiquity such as the impossibility of trisecting an arbitrary angle. After that, variations on Plato's theme are explored: using only a ruler, a compass, toothpicks, a ruler and dividers, a marked rule, or a tomahawk, ending in a chapter on geometric constructions by paperfolding. The author writes in a charming style and nicely intersperses history and philosophy within the mathematics, teaching a little geometry and a little algebra along the way. This is as much an algebra book as it is a geometry book, yet since all the algebra and geometry needed is developed within the text, very little mathematical background is required. This text has been class tested for several semesters with a master's level class for secondary teachers.
This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2."
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of PrA1/4fer rings is discussed from the geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of PrA1/4fer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important results obtained in the book include a criterion for the elementarity of an embedding of a multi-valued field and a criterion for the elementary equivalence for multi-valued fields from the class defined by the additional natural elementary conditions (absolute unramification, maximality and almost continuity of local elementary properties). The book concludes with a brief chapter discussing the bibliographic references available on the material presented, and a short history of the major developments within the field.
A smart city utilizes ICT technologies to improve the working effectiveness, share various data with the citizens, and enhance political assistance and societal wellbeing. The fundamental needs of a smart and sustainable city are utilizing smart technology for enhancing municipal activities, expanding monetary development, and improving citizens' standards of living. Data-Driven Mathematical Modeling in Smart Cities discusses new mathematical models in smart and sustainable cities using big data, visualization tools in mathematical modeling, machine learning-based mathematical modeling, and more. It further delves into privacy and ethics in data analysis. Covering topics such as deep learning, optimization-based data science, and smart city automation, this premier reference source is an excellent resource for mathematicians, statisticians, computer scientists, civil engineers, government officials, students and educators of higher education, librarians, researchers, and academicians.
This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developments of the '70s when the use of computers made advanced research possible, to current work on this subject in China and elsewhere. The five chapters treat vortex methods for the Euler and Navier-Stokes equations; mathematical theory for incompressible flows; convergence of vortex methods for the Euler equations; convergence of viscosity splitting; and convergence of the random vortex method. Audience: This volume will be of interest to researchers and graduate students of applied mathematics, scientists in fluid dynamics, and aviation engineers.
Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space.Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources. Because of the elementary level of presentation, this book can be treated as an introductory course to electromagnetic theory. Numerous illustrations are helpful in visualizing the exposition. Furthermore, each chapter ends with a list of problems which amplify or further illustrate the fundamental arguments.
This book takes a theoretical perspective on the study of school algebra, in which both semiotics and history occur. The Methodological design allows for the interpretation of specific phenomena and the inclusion of evidence not addressed in more general treatments. The book gives priority to "meaning in use" over "formal meaning." These approaches and others of similar nature lead to a focus on competence rather than a user 's activity with mathematical language.
A NATO Advanced Study Institute entitled "Algebraic K-theory: Connections with Geometry and Topology" was held at the Chateau Lake Louise, Lake Louise, Alberta, Canada from December 7 to December 11 of 1987. This meeting was jointly supported by NATO and the Natural Sciences and Engineering Research Council of Canada, and was sponsored in part by the Canadian Mathematical Society. This book is the volume of proceedings for that meeting. Algebraic K-theory is essentially the study of homotopy invariants arising from rings and their associated matrix groups. More importantly perhaps, the subject has become central to the study of the relationship between Topology, Algebraic Geometry and Number Theory. It draws on all of these fields as a subject in its own right, but it serves as well as an effective translator for the application of concepts from one field in another. The papers in this volume are representative of the current state of the subject. They are, for the most part, research papers which are primarily of interest to researchers in the field and to those aspiring to be such. There is a section on problems in this volume which should be of particular interest to students; it contains a discussion of the problems from Gersten's well-known list of 1973, as well as a short list of new problems.
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology at the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
The study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool lies in the heart of Clifford analysis. The focus is on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. At the present time, the study of Clifford algebra and Clifford analysis has grown into a major research field. There are two sources of papers in this collection. One is from a satellite conference to the ICM 2002 in Beijing, held August 15-18 at the University of Macau; and the other stems from invited contributions by top-notch experts in the field.
This book arose from a conference on "Singularities and Computer Algebra" which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel's 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schoenemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level. |
You may like...
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,048
Discovery Miles 10 480
View of Sir Isaac Newton's Philosophy
Henry 1694-1771 Pemberton
Hardcover
R1,017
Discovery Miles 10 170
|