![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
This present volume is the Proceedings of the 18th International C- ference on Nearrings and Near?elds held in Hamburg at the Universit] at derBundeswehrHamburgfromJuly27toAugust03,2003. ThisConf- ence was organized by Momme Johs Thomsen and Gerhard Saad from the Universit] at der Bundeswehr Hamburg and by Alexander Kreuzer, Hubert Kiechle and Wen-Ling Huang from the Universit] a ]t Hamburg. It was already the second Conference on Nearrings and Near?elds in Hamburg after the Conference on Nearrings and Near?elds at the same venue from July 30 to August 06, 1995. TheConferencewasattendedby57mathematiciansandmanyacc- panying persons who represented 16 countries from all ?ve continents. The ?rst of these conferences took place 35 years earlier in 1968 at the Mathematische Forschungsinstitut Oberwolfach in the Black Forest inGermany. Thiswasalsothesiteofthesecond, third, ?fthandeleventh conference in 1972, 1976, 1980 and 1989. The other twelve conferences held before the second Hamburg Conference took place in nine di?erent countries. For details about this and, moreover, for a general histo- cal overview of the development of the subject we refer to the article "On the beginnings and developments of near-ring theory" by Gerhard Betsch 3] in the proceedings of the 13th Conference in Fredericton, New Brunswick, Canada. Duringthelast?ftyyearsthetheoryofnearringsandrelatedalgebraic structures like near?elds, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features."
The eighteenth International Workshop on Operator Theory and Applications (IWOTA) was hosted by the Unit for Business Mathematics and Informatics of the North-West University, Potchefstroom, South Africa from July 3 to 6, 2007. The conference was dedicated to Professor Joseph A. Ball on the occasion of his 60th birthday and to Professor Marinus M. Kaashoek on the occasion of his 70th birthday, and we wish to similarly honour them by dedicating this volume of the proceedings to them. TheaimoftheIWOTAmeetingsistobringtogethermathematiciansworking in operator theory and its applications to related ?elds. Each conference therefore has a unique character, depending on the related ?elds chosen by the local or- nizers. In the present case Functional Analysis and Von Neumann algebras were decided on, due to the number of people actively working in those ?elds in South Africa. The meetings are intended to be truly international (the seventeen pre- ous ones were held in 11 di?erent countries) and this conference was no exception, with participants drawn from 17 countries. IWOTA is directed by an international steering committee of 25 members under the guidance of the president I. Gohberg (Tel Aviv), assisted by the Vice PresidentsJ.W.Helton(LaJolla)andM.A.Kaashoek(Amsterdam).TheProce- ings of the IWOTA workshops regularly appear in the Birkhauser .. series: Operator Theory: Advances and Applications, and we thank them for their willingness to continue this cooperation by publishing this volume.
The book is meant to serve two purposes. The first and more obvious
one is to present state of the art results in algebraic research
into residuated structures related to substructural logics. The
second, less obvious but equally important, is to provide a
reasonably gentle introduction to algebraic logic. At the
beginning, the second objective is predominant. Thus, in the first
few chapters the reader will find a primer of universal algebra for
logicians, a crash course in nonclassical logics for algebraists,
an introduction to residuated structures, an outline of
Gentzen-style calculi as well as some titbits of proof theory - the
celebrated Hauptsatz, or cut elimination theorem, among them. These
lead naturally to a discussion of interconnections between logic
and algebra, where we try to demonstrate how they form two sides of
the same coin. We envisage that the initial chapters could be used
as a textbook for a graduate course, perhaps entitled Algebra and
Substructural Logics.
In many areas of mathematics some "higher operations" are arising. These havebecome so important that several research projects refer to such expressions. Higher operationsform new types of algebras. The key to understanding and comparing them, to creating invariants of their action is operad theory. This is a point of view that is 40 years old in algebraic topology, but the new trend is its appearance in several other areas, such as algebraic geometry, mathematical physics, differential geometry, and combinatorics. The present volume is the first comprehensive and systematic approach to algebraic operads. An operad is an algebraic device that serves to study all kinds of algebras (associative, commutative, Lie, Poisson, A-infinity, etc.) from a conceptual point of view. The book presents this topic with an emphasis on Koszul duality theory. After a modern treatment of Koszul duality for associative algebras, the theory is extended to operads. Applications to homotopy algebra are given, for instance the Homotopy Transfer Theorem. Although the necessary notions of algebra are recalled, readers are expected to be familiar with elementary homological algebra. Each chapter ends with a helpful summary and exercises. A full chapter is devoted to examples, and numerous figures are included. After a low-level chapter on Algebra, accessible to (advanced) undergraduate students, the level increases gradually through the book. However, the authors have done their best to make it suitable for graduate students: three appendicesreview the basic results needed in order to understand the various chapters. Since higher algebra is becoming essential in several research areas like deformation theory, algebraic geometry, representation theory, differential geometry, algebraic combinatorics, and mathematical physics, the book can also be used as a reference work by researchers. "
The volume covers wide-ranging topics from Theory: structure of finite fields, normal bases, polynomials, function fields, APN functions. Computation: algorithms and complexity, polynomial factorization, decomposition and irreducibility testing, sequences and functions. Applications: algebraic coding theory, cryptography, algebraic geometry over finite fields, finite incidence geometry, designs, combinatorics, quantum information science.
This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.
Computational intelligence (CI) lies at the interface between engineering and computer science; control engineering, where problems are solved using computer-assisted methods. Thus, it can be regarded as an indispensable basis for all artificial intelligence (AI) activities. This book collects surveys of most recent theoretical approaches focusing on fuzzy systems, neurocomputing, and nature inspired algorithms. It also presents surveys of up-to-date research and application with special focus on fuzzy systems as well as on applications in life sciences and neuronal computing.
A smart city utilizes ICT technologies to improve the working effectiveness, share various data with the citizens, and enhance political assistance and societal wellbeing. The fundamental needs of a smart and sustainable city are utilizing smart technology for enhancing municipal activities, expanding monetary development, and improving citizens' standards of living. Data-Driven Mathematical Modeling in Smart Cities discusses new mathematical models in smart and sustainable cities using big data, visualization tools in mathematical modeling, machine learning-based mathematical modeling, and more. It further delves into privacy and ethics in data analysis. Covering topics such as deep learning, optimization-based data science, and smart city automation, this premier reference source is an excellent resource for mathematicians, statisticians, computer scientists, civil engineers, government officials, students and educators of higher education, librarians, researchers, and academicians.
Banach algebras are Banach spaces equipped with a continuous multipli- tion. In roughterms, there arethree types ofthem: algebrasofboundedlinear operators on Banach spaces with composition and the operator norm, al- bras consisting of bounded continuous functions on topological spaces with pointwise product and the uniform norm, and algebrasof integrable functions on locally compact groups with convolution as multiplication. These all play a key role in modern analysis. Much of operator theory is best approached from a Banach algebra point of view and many questions in complex analysis (such as approximation by polynomials or rational functions in speci?c - mains) are best understood within the framework of Banach algebras. Also, the study of a locally compact Abelian group is closely related to the study 1 of the group algebra L (G). There exist a rich literature and excellent texts on each single class of Banach algebras, notably on uniform algebras and on operator algebras. This work is intended as a textbook which provides a thorough introduction to the theory of commutative Banach algebras and stresses the applications to commutative harmonic analysis while also touching on uniform algebras. In this sense and purpose the book resembles Larsen's classical text 75] which shares many themes and has been a valuable resource. However, for advanced graduate students and researchers I have covered several topics which have not been published in books before, including some journal articles.
The field of generalized inverses has grown much since the appearance of the first edition in 1974, and is still growing. This book accounts for these developments while maintaining the informal and leisurely style of the first edition. New material has been added, including a chapter on applications, an appendix on the work of E.H. Moore, new exercises and applications.
Following an initiative of the late Hans Zassenhaus in 1965, the Departments of Mathematics at The Ohio State University and Denison University organize conferences in combinatorics, group theory, and ring theory. Between May 18-21, 2000, the 25th conference of this series was held. Usually, there are twenty to thirty invited 20-minute talks in each of the three main areas. However, at the 2000 meeting, the combinatorics part of the conference was extended, to honor the 65th birthday of Professor Dijen Ray-Chaudhuri. This volulme is the proceedings of this extension. Most of the papers are in coding theory and design theory, reflecting the major interest of Professor Ray-Chaudhuri, but there are articles on association schemes, algebraic graph theory, combinatorial geometry, and network flows as well. There are four surveys and seventeen research articles, and all of these went through a thorough refereeing process. The volume is primarily recommended for researchers and graduate students interested in new developments in coding theory and design theory.
This book contains nine well-organized survey articles by leading researchers in positivity, with a strong emphasis on functional analysis. It provides insight into the structure of classical spaces of continuous functions, f-algebras, and integral operators, but also contains contributions to modern topics like vector measures, operator spaces, ordered tensor products, non-commutative Banach function spaces, and frames. Contributors: B. Banerjee, D.P. Blecher, K. Boulabiar, Q. Bu, G. Buskes, G.P. Curbera, M. Henriksen, A.G. Kusraev, J. Marti-nez, B. de Pagter, W.J. Ricker, A.R. Schep, A. Triki, A.W. Wickstead
This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made.The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.
This book is an introduction to the theory of complex manifolds. The authors¿ intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involving sheaves, coherence, and higher-dimensional cohomology have been completely avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Nevertheless, deep results can be proved. The book can be used as a first introduction to several complex variables as well as a reference for the expert.
Clifford, or geometric algebra, provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This book introduces the concepts and framework of Clifford algebra and provides a rich source of examples of how to work with this formalism.
In modern society services and support provided by computer-based systems have become ubiquitous and indeed have started to fund amentally alter the way people conduct their business. Moreover, it has become apparent that among the great variety of computer technologies available to potential users a crucial role will be played by concurrent systems. The reason is that many commonly occurring phenomena and computer applications are highly con current : typical examples include control systems, computer networks, digital hardware, business computing, and multimedia systems. Such systems are characterised by ever increasing complexity, which results when large num bers of concurrently active components interact. This has been recognised and addressed within the computing science community. In particular, sev eral form al models of concurrent systems have been proposed, studied, and applied in practice. This book brings together two of the most widely used formalisms for de scribing and analysing concurrent systems: Petri nets and process algebras. On the one hand , process algebras allow one to specify and reason about the design of complex concurrent computing systems by means of algebraic operators corresponding to common programming constructs. Petri nets, on the other hand, provide a graphical representation of such systems and an additional means of verifying their correctness efficiently, as well as a way of expressing properties related to causality and concurrency in system be haviour.
This is the second of two volumes of a state-of-the-art survey article collection which originates from three commutative algebra sessions at the 2009 Fall Southeastern American Mathematical Society Meeting at Florida Atlantic University. The articles reach into diverse areas of commutative algebra and build a bridge between Noetherian and non-Noetherian commutative algebra. These volumes present current trends in two of the most active areas of commutative algebra: non-noetherian rings (factorization, ideal theory, integrality), and noetherian rings (the local theory, graded situation, and interactions with combinatorics and geometry). This volume contains surveys on aspects of closure operations, finiteness conditions and factorization. Closure operations on ideals and modules are a bridge between noetherian and nonnoetherian commutative algebra. It contains a nice guide to closure operations by Epstein, but also contains an article on test ideals by Schwede and Tucker and one by Enescu which discusses the action of the Frobenius on finite dimensional vector spaces both of which are related to tight closure. Finiteness properties of rings and modules or the lack of them come up in all aspects of commutative algebra. However, in the study of non-noetherian rings it is much easier to find a ring having a finite number of prime ideals. The editors have included papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship of rings with finite Krull dimension and their finite extensions. Finiteness properties in commutative group rings are discussed in Glaz and Schwarz's paper. And Olberding's selection presents us with constructions that produce rings whose integral closure in their field of fractions is not finitely generated. The final three papers in this volume investigate factorization in a broad sense. The first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime ideals of the projective line over the integers. The editors have also included a paper on zero divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final paper, by Chapman and Krause, concerns non-unique factorization.
This volume is an outgrowth of the research project "The Inverse Ga lois Problem and its Application to Number Theory" which was carried out in three academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work shops and symposia in previous years. The title of this book came from that of the conference, and the authors were participants of those meet All of the articles here were critically refereed by experts. Some of ings. these articles give well prepared surveys on branches of research areas, and many articles aim to bear the latest research results accompanied with carefully written expository introductions. When we started our re earch project, we picked up three areas to investigate under the key word "Galois groups"; namely, "generic poly nomials" to be applied to number theory, "Galois coverings of algebraic curves" to study new type of representations of absolute Galois groups, and explicitly described "Shimura varieties" to understand well the Ga lois structures of some interesting polynomials including Brumer's sextic for the alternating group of degree 5. The topics of the articles in this volume are widely spread as a result. At a first glance, some readers may think this book somewhat unfocussed."
This book offers an essential review of central theories, current research and applications in the field of numerical representations of ordered structures. It is intended as a tribute to Professor Ghanshyam B. Mehta, one of the leading specialists on the numerical representability of ordered structures, and covers related applications to utility theory, mathematical economics, social choice theory and decision-making. Taken together, the carefully selected contributions provide readers with an authoritative review of this research field, as well as the knowledge they need to apply the theories and methods in their own work.
Do formulas exist for the solution to algebraical equations in one variable of any degree like the formulas for quadratic equations? The main aim of this book is to give new geometrical proof of Abel's theorem, as proposed by Professor V.I. Arnold. The theorem states that for general algebraical equations of a degree higher than 4, there are no formulas representing roots of these equations in terms of coefficients with only arithmetic operations and radicals. A secondary, and more important aim of this book, is to acquaint the reader with two very important branches of modern mathematics: group theory and theory of functions of a complex variable. This book also has the added bonus of an extensive appendix devoted to the differential Galois theory, written by Professor A.G. Khovanskii. As this text has been written assuming no specialist prior knowledge and is composed of definitions, examples, problems and solutions, it is suitable for self-study or teaching students of mathematics, from high school to graduate.
The book contains seven refereed research papers on locally compact quantum groups and groupoids by leading experts in the respective fields. These contributions are based on talks presented on the occasion of the meeting between mathematicians and theoretical physicists held in Strasbourg from February 21 to February 23, 2002. Topics covered are: various constructions of locally compact quantum groups and their multiplicative unitaries; duality theory for locally compact quantum groups; combinatorial quantization of flat connections associated with SL(2,c); quantum groupoids, especially coming from Depth 2 Extensions of von Neumann algebras, C*-algebras and Rings. Many mathematical results are motivated by problems in theoretical physics. Historical remarks set the results presented in perspective. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume will give an overview of a field of research in which great progress has been achieved in the last few years, with new ties to many other areas of mathematics and physics.
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, Rome, in 2012. The conference gathered virtually all the main specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book includes both extended abstracts of the conference papers and new original works related to the theme of the conference.
The book is concerned with the statistical theory for locating spatial sensors. It bridges the gap between spatial statistics and optimum design theory. After introductions to those two fields the topics of exploratory designs and designs for spatial trend and variogram estimation are treated. Special attention is devoted to describing new methodologies to cope with the problem of correlated observations.
This is the first of two volumes dedicated to the centennial of the distinguished mathematician Selim Grigorievich Krein. The companion volume is Contemporary Mathematics, Volume 734. Krein was a major contributor to functional analysis, operator theory, partial differential equations, fluid dynamics, and other areas, and the author of several influential monographs in these areas. He was a prolific teacher, graduating 83 Ph.D. students. Krein also created and ran, for many years, the annual Voronezh Winter Mathematical Schools, which significantly influenced mathematical life in the former Soviet Union. The articles contained in this volume are written by prominent mathematicians, former students and colleagues of Selim Krein, as well as lecturers and participants of Voronezh Winter Schools. They are devoted to a variety of contemporary problems in functional analysis, operator theory, several complex variables, topological dynamics, and algebraic, convex, and integral geometry. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Linear Algebra - Pearson New…
John B. Fraleigh, Raymond Beauregard
Paperback
R2,318
Discovery Miles 23 180
|