![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
rd This volume contains papers written by the participants of the 3 Workshop on Operator Theory in Krein spaces and Nonlinear Eigenvalue Problems, held at the Technische Universit. at Berlin, Germany, December 12 to 14, 2003. The workshop covered topics from spectral, perturbation and extension t- ory of linear operators in Krein spaces. They included generalized Nevanlinna functions and related classes of functions, boundary value problems for di?erential operators, spectral problems for matrix polynomials, and perturbation problems forsecondorderevolutionequations.Alltheseproblemsarere?ectedinthepresent volume. The workshop was attended by 46 participants from 12 countries. It is a pleasure to acknowledge the substantial ?nancial support received from the - Research Training Network HPRN-CT-2000-00116 "Analysis and Operators" by the European Community, - DFG-Forschungszentrum MATHEON "Mathematik fur .. Schlussel- .. technologien", - Institute of Mathematics of the Technische Universit. at Berlin. We would also like to thank Petra Grimberger for her great help. Last but not least, special thanks are due to Jussi Behrndt, Christian Mehl and Carsten Trunk for their excellent workin the organisationof the workshopand the preparationof this volume. Without their assistance the workshop might not have taken place. The Editors Operator Theory: Advances and Applications, Vol. 162, 1-17 c 2005 Birkh. auser Verlag Basel/Switzerland Partial Non-stationary Perturbation Determinants for a Class of J-symmetric Operators Vadim Adamyan, Peter Jonas and Heinz Langer Abstract. We consider the partial non-stationary perturbation determinant (1) itA ?itH ? (t):=det e P e ,t? R.
Relation algebras are algebras arising from the study of binary
relations.
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge (most of it from the authors' own work) about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems.
"Nature performs not hing vainly, and makes nothing unnecessary" Aristotle Interest in the passage of charged particles through crystals first appeared at the beginning of this century following experiments on x-ray diffraction in crystallattices, which provided the proof of an ordered distribution of atoms in a crystal. Stark [1] put forward the hypothesis that certain directions in a crystal should be relatively transparent to charged particles. These first ideas on the channeling of charged particles in crystals were forgotten but became topical again in the early 1960s when the channeling effect was rediscovered by computer simulation [2] and in experiments [3] that revealed anomalously long ion ranges in crystals. The orientational ef fects during the passage of charged particles through crystals have been found for a whole range of processes characterized by small impact parameters for collisions between particles and atoms: nuclear reactions, large-angle scatter ing, energy losses. Lindhard explained the channeling of charged particles in crystals [4]. The results of the numerous investigations into the channeling of low-energy (amounting to several MeV) charged particles in crystals have been summarized in several monographs and reviews [5~8l.
Effective Polynomial Computation is an introduction to the algorithms of computer algebra. It discusses the basic algorithms for manipulating polynomials including factoring polynomials. These algorithms are discussed from both a theoretical and practical perspective. Those cases where theoretically optimal algorithms are inappropriate are discussed and the practical alternatives are explained. Effective Polynomial Computation provides much of the mathematical motivation of the algorithms discussed to help the reader appreciate the mathematical mechanisms underlying the algorithms, and so that the algorithms will not appear to be constructed out of whole cloth. Preparatory to the discussion of algorithms for polynomials, the first third of this book discusses related issues in elementary number theory. These results are either used in later algorithms (e.g. the discussion of lattices and Diophantine approximation), or analogs of the number theoretic algorithms are used for polynomial problems (e.g. Euclidean algorithm and p-adic numbers). Among the unique features of Effective Polynomial Computation is the detailed material on greatest common divisor and factoring algorithms for sparse multivariate polynomials. In addition, both deterministic and probabilistic algorithms for irreducibility testing of polynomials are discussed.
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
This book studies algebras and linear transformations acting on finite -dimensional vector spaces over arbitrary fields. It is written for students who have prior knowledge of algebra and linear algebra. The goal is to present a balance of theory and example in order for students to gain a firm understanding of the basic theory of finite- dimensional algebras and to provide a foundation for subsequent advanced study in a number of areas of mathematics. As such, the level of exposition is suitable for senior undergraduate students.
A Mathematician Said Who Can Quote Me a Theorem that's True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick ?rst came to my ears in May 1998 during a talk by T.Y. Lam 1 on ?eld invariants from the theory of quadratic forms. It is-poetic exaggeration allowed-a suitable motto for this monograph. What is it about? At the beginning of the seventies I drew up a specialization theoryofquadraticandsymmetricbilinear formsover ?elds[32].Let? : K? L?? be a place. Then one can assign a form? (?)toaform? over K in a meaningful way ? if? has "good reduction" with respect to? (see1.1). The basic idea is to simply apply the place? to the coe?cients of?, which must therefore be in the valuation ring of?. The specialization theory of that time was satisfactory as long as the ?eld L, and therefore also K, had characteristic 2. It served me in the ?rst place as the foundation for a theory of generic splitting of quadratic forms [33], [34]. After a very modest beginning, this theory is now in full bloom. It became important for the understanding of quadratic forms over ?elds, as can be seen from the book [26]of Izhboldin-Kahn-Karpenko-Vishik for instance. One should note that there exists a theoryof(partial)genericsplittingofcentralsimplealgebrasandreductivealgebraic groups, parallel to the theory of generic splitting of quadratic forms (see [29] and the literature cited there).
This volume is both a tribute to Ulrich Felgner's research in algebra, logic, and set theory and a strong research contribution to these areas. Felgner's former students, friends and collaborators have contributed sixteen papers to this volume that highlight the unity of these three fields in the spirit of Ulrich Felgner's own research. The interested reader will find excellent original research surveys and papers that span the field from set theory without the axiom of choice via model-theoretic algebra to the mathematics of intonation.
Quantum Structures and the Nature of Reality is a collection of papers written for an interdisciplinary audience about the quantum structure research within the International Quantum Structures Association. The advent of quantum mechanics has changed our scientific worldview in a fundamental way. Many popular and semi-popular books have been published about the paradoxical aspects of quantum mechanics. Usually, however, these reflections find their origin in the standard views on quantum mechanics, most of all the wave-particle duality picture. Contrary to relativity theory, where the meaning of its revolutionary ideas was linked from the start with deep structural changes in the geometrical nature of our world, the deep structural changes about the nature of our reality that are indicated by quantum mechanics cannot be traced within the standard formulation. The study of the structure of quantum theory, its logical content, its axiomatic foundation, has been motivated primarily by the search for their structural changes. Due to the high mathematical sophistication of this quantum structure research, no books have been published which try to explain the recent results for an interdisciplinary audience. This book tries to fill this gap by collecting contributions from some of the main researchers in the field. They reveal the steps that have been taken towards a deeper structural understanding of quantum theory.
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
(NOTES)This text focuses on the topics which are an essential part of the engineering mathematics course:ordinary differential equations, vector calculus, linear algebra and partial differential equations. Advantages over competing texts: 1. The text has a large number of examples and problems - a typical section having 25 quality problems directly related to the text. 2. The authors use a practical engineering approach based upon solving equations. All ideas and definitions are introduced from this basic viewpoint, which allows engineers in their second year to understand concepts that would otherwise be impossibly abstract. Partial differential equations are introduced in an engineering and science context based upon modelling of physical problems. A strength of the manuscript is the vast number of applications to real-world problems, each treated completely and in sufficient depth to be self-contained. 3. Numerical analysis is introduced in the manuscript at a completely elementary calculus level. In fact, numerics are advertised as just an extension of the calculus and used generally as enrichment, to help communicate the role of mathematics in engineering applications. 4.The authors have used and updated the book as a course text over a 10 year period. 5. Modern outline, as contrasted to the outdated outline by Kreysig and Wylie. 6. This is now a one year course. The text is shorter and more readable than the current reference type manuals published all at around 1300-1500 pages.
Difference algebra grew out of the study of algebraic difference equations with coefficients from functional fields in much the same way as the classical algebraic geometry arose from the study of polynomial equations with numerical coefficients. The first stage of the development of the theory is associated with its founder J. F. Ritt (1893 - 1951) and R. Cohn whose book Difference Algebra (1965) remained the only fundamental monograph on the subject for many years. Nowadays, difference algebra has overgrew the frame of the theory of ordinary algebraic difference equations and appears as a rich theory with applications to the study of equations in finite differences, functional equations, differential equations with delay, algebraic structures with operators, group and semigroup rings. This book reflects the contemporary level of difference algebra; it contains a systematic study of partial difference algebraic structures and their applications, as well as the coverage of the classical theory of ordinary difference rings and field extensions. The monograph is intended for graduate students and researchers in difference and differential algebra, commutative algebra, ring theory, and algebraic geometry. It will be also of interest to researchers in computer algebra, theory of difference equations and equations of mathematical physics. The book is self-contained; it requires no prerequisites other than knowledge of basic algebraic concepts and mathematical maturity of an advanced undergraduate.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras .are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.
This volume is a systematic treatment of the additive number theory of polynomials over a finite field, an area possessing deep and fascinating parallels with classical number theory. In providing asymptomatic proofs of both the Polynomial Three Primes Problem (an analog of Vinogradov's theorem) and the Polynomial Waring Problem, the book develops the various tools necessary to apply an adelic "circle method" to a wide variety of additive problems in both the polynomial and classical settings. A key to the methods employed here is that the generalized Riemann hypothesis is valid in this polynomial setting. The authors presuppose a familiarity with algebra and number theory as might be gained from the first two years of graduate course, but otherwise the book is self-contained. Starting with analysis on local fields, the main technical results are all proved in detail so that there are extensive discussions of the theory of characters in a non-Archimidean field, adele class groups, the global singular series and Radon-Nikodyn derivatives, L-functions of Dirichlet type, and K-ideles.
This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals
The contributions in this book focus on a variety of topics related to discrepancy theory, comprising Fourier techniques to analyze discrepancy, low discrepancy point sets for quasi-Monte Carlo integration, probabilistic discrepancy bounds, dispersion of point sets, pair correlation of sequences, integer points in convex bodies, discrepancy with respect to geometric shapes other than rectangular boxes, and also open problems in discrepany theory.
This book focuses on problems at the interplay between the theory of partitions and optimal transport with a view toward applications. Topics covered include problems related to stable marriages and stable partitions, multipartitions, optimal transport for measures and optimal partitions, and finally cooperative and noncooperative partitions. All concepts presented are illustrated by examples from game theory, economics, and learning.
A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.
This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices, and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important applications in cryptography, quantum information theory, communications, and networking.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Together, the two books give the reader a global view of algebra and its role in mathematics as a whole. Key topics and features of Basic Algebra: *Linear algebra and group theory build on each other continually *Chapters on modern algebra treat groups, rings, fields, modules, and Galois groups, with emphasis on methods of computation throughout *Three prominent themes recur and blend together at times: the analogy between integers and polynomials in one variable over a field, the interplay between linear algebra and group theory, and the relationship between number theory and geometry *Many examples and hundreds of problems are included, along with a separate 90-page section giving hints or complete solutions for most of the problems *The exposition proceeds from the particular to the general, often providing examples well before a theory that incorporates them; includes blocks of problems that introduce additional topics and applications for further study *Applications to science and engineering (e.g., the fast Fourier transform, the theory of error-correcting codes, the use of the Jordan canonical form in solving linear systems of ordinary differential equations, and constructions of interest in mathematical physics) appear in sequences of problems Basic Algebra presents the subject matter in a forward-looking way that takes into account its historical development. It is suitable as a text in a two-semester advanced undergraduate or first-year graduate sequence in algebra, possiblysupplemented by some material from Advanced Algebra at the graduate level. It requires of the reader only familiarity with matrix algebra, an understanding of the geometry and reduction of linear equations, and an acquaintance with proofs.
This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR." |
![]() ![]() You may like...
Face Detection and Gesture Recognition…
Ming-Hsuan Yang, Narendra Ahuja
Hardcover
R2,985
Discovery Miles 29 850
Perceptual Organization for Artificial…
Kim L Boyer, Sudeep Sarkar
Hardcover
R3,085
Discovery Miles 30 850
Performance Characterization in Computer…
Reinhard Klette, H. Siegfried Stiehl, …
Hardcover
R3,065
Discovery Miles 30 650
Human Friendly Robotics - 10th…
Fanny Ficuciello, Fabio Ruggiero, …
Hardcover
R2,413
Discovery Miles 24 130
Making a Machine That Sees Like Us
Zygmunt Pizlo, Yunfeng Li, …
Hardcover
R2,395
Discovery Miles 23 950
Biomechanics of Anthropomorphic Systems
Gentiane Venture, Jean-Paul Laumond, …
Hardcover
R4,386
Discovery Miles 43 860
|