Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > General
Signal processing applications have burgeoned in the past decade.
During the same time, signal processing techniques have matured
rapidly and now include tools from many areas of mathematics,
computer science, physics, and engineering. This trend will
continue as many new signal processing applications are opening up
in consumer products and communications systems.
For every mathematician, ring theory and K-theory are intimately connected: al- braic K-theory is largely the K-theory of rings. At ?rst sight, polytopes, by their very nature, must appear alien to surveyors of this heartland of algebra. But in the presence of a discrete structure, polytopes de?ne a?ne monoids, and, in their turn, a?ne monoids give rise to monoid algebras. Teir spectra are the building blocks of toric varieties, an area that has developed rapidly in the last four decades. From a purely systematic viewpoint, "monoids" should therefore replace "po- topes" in the title of the book. However, such a change would conceal the geometric ?avor that we have tried to preserve through all chapters. Before delving into a description of the contents we would like to mention three general features of the book: (?) the exhibiting of interactions of convex geometry, ring theory, and K-theory is not the only goal; we present some of the central results in each of these ?elds; (?) the exposition is of constructive (i. e., algorithmic) nature at many places throughout the text-there is no doubt that one of the driving forces behind the current popularity of combinatorial geometry is the quest for visualization and computation; (? ) despite the large amount of information from various ?elds, we have strived to keep the polytopal perspective as the major organizational principle.
This volume contains the proceedings of the NATO Advanced Study Institute "Symmetric Functions 2001: Surveys of Developments and Per- spectives", held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, during the two weeks 25 June - 6 July 2001. The objective of the ASI was to survey recent developments and outline research perspectives in various fields, for which the fundamental questions can be stated in the language of symmetric functions (along the way emphasizing interdisciplinary connections). The instructional goals of the event determined its format: the ASI consisted of about a dozen mini-courses. Seven of them served as a basis for the papers comprising the current volume. The ASI lecturers were: Persi Diaconis, William Fulton, Mark Haiman, Phil Hanlon, Alexander Klyachko, Bernard Leclerc, Ian G. Macdonald, Masatoshi Noumi, Andrei Okounkov, Grigori Olshanski, Eric Opdam, Ana- toly Vershik, and Andrei Zelevinsky. The organizing committee consisted of Phil Hanlon, Ian Macdonald, Andrei 0 kounkov, G rigori 0 lshanski (co-director), and myself ( co-director). The original ASI co-director Sergei Kerov, who was instrumental in determining the format and scope of the event, selection of speakers, and drafting the initial grant proposal, died in July 2000. Kerov's mathemat- ical ideas strongly influenced the field, and were presented at length in a number of ASI lectures. A special afternoon session on Monday, July 2, was dedicated to his memory.
This book is intended as an introductory lecture in material physics, in which the modern computational group theory and the electronic structure calculation are in collaboration. The first part explains how to use computer algebra for applications in solid-state simulation, based on the GAP computer algebra package. Computer algebra enables us to easily obtain various group theoretical properties, such as the representations, character tables, and subgroups. Furthermore it offers a new perspective on material design, which could be executed in a mathematically rigorous and systematic way. The second part then analyzes the relation between the structural symmetry and the electronic structure in C60 (as an example of a system without periodicity). The principal object of the study was to illustrate the hierarchical change in the quantum-physical properties of the molecule, which correlates to the reduction in the symmetry (as it descends down in the ladder of subgroups). The book also presents the computation of the vibrational modes of the C60 by means of the computer algebra. In order to serve the common interests of researchers, the details of the computations (the required initial data and the small programs developed for the purpose) are explained in as much detail as possible.
This book distinguishes itself from the many other textbooks on the topic of linear algebra by including mathematical and computational chapters along with examples and exercises with Matlab. In recent years, the use of computers in many areas of engineering and science has made it essential for students to get training in numerical methods and computer programming. Here, the authors use both Matlab and SciLab software as well as covering core standard material. It is intended for libraries; scientists and researchers; pharmaceutical industry.
This book takes a unique approach to information retrieval by laying down the foundations for a modern algebra of information retrieval based on lattice theory. All major retrieval methods developed so far are described in detail a" Boolean, Vector Space and probabilistic methods, but also Web retrieval algorithms like PageRank, HITS, and SALSA a" and the author shows that they all can be treated elegantly in a unified formal way, using lattice theory as the one basic concept. Further, he also demonstrates that the lattice-based approach to information retrieval allows us to formulate new retrieval methods. SAndor Dominicha (TM)s presentation is characterized by an engineering-like approach, describing all methods and technologies with as much mathematics as needed for clarity and exactness. His readers in both computer science and mathematics will learn how one single concept can be used to understand the most important retrieval methods, to propose new ones, and also to gain new insights into retrieval modeling in general. Thus, his book is appropriate for researchers and graduate students, who will additionally benefit from the many exercises at the end of each chapter.
This book is an elaboration of ideas of Irving Kaplansky introduced in his book Rings of operators ([52], [54]). The subject of Baer *-rings has its roots in von Neumann's theory of 'rings of operators' (now called von Neumann algebras), that is, *-algebras of operators on a Hilbert space, containing the identity op- ator, that are closed in the weak operator topology (hence also the name W*-algebra). Von Neumann algebras are blessed with an excess of structure-algebraic, geometric, topological-so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work. The urge to axiomatize at least portions of the theory of von N- mann algebras surfaced early, notably in work of S. W. P. Steen [84], I. M. Gel'fand and M. A. Naimark [30], C. E. Rickart 1741, and von Neumann himself [53]. A culmination was reached in Kaplansky's AW*-algebras [47], proposed as a largely algebraic setting for the - trinsic (nonspatial) theory of von Neumann algebras (i. e., the parts of the theory that do not refer to the action of the elements of the algebra on the vectors of a Hilbert space). Other, more algebraic developments had occurred in lattice theory and ring theory. Von Neumann's study of the projection lattices of certain operator algebras led him to introduce continuous geometries (a kind of lattice) and regular rings (which he used to 'coordinatize' certain continuous geometries, in a manner analogous to the introd- tion of division ring coordinates in projective geometry).
Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During thelastyearsresearchrelatedto(random)treeshasbeenconstantlyincreasing and several asymptotic and probabilistic techniques have been developed in order to describe characteristics of interest of large trees in di?erent settings. Thepurposeofthisbookistoprovideathoroughintroductionintovarious aspects of trees in randomsettings anda systematic treatment ofthe involved mathematicaltechniques. It shouldserveasa referencebookaswellasa basis for future research. One major conceptual aspect is to connect combinatorial and probabilistic methods that range from counting techniques (generating functions, bijections) over asymptotic methods (singularity analysis, saddle point techniques) to various sophisticated techniques in asymptotic probab- ity (convergence of stochastic processes, martingales). However, the reading of the book requires just basic knowledge in combinatorics, complex analysis, functional analysis and probability theory of master degree level. It is also part of concept of the book to provide full proofs of the major results even if they are technically involved and lengthy.
The present book deals with canonical factorization of matrix and operator functions that appear in state space form or that can be transformed into such a form. A unified geometric approach is used. The main results are all expressed explicitly in terms of matrices or operators, which are parameters of the state space representation. The applications concern different classes of convolution equations. A large part the book deals with rational matrix functions only.
This volume consists of a collection of invited papers on the theory of rings and modules, most of which were presented at the biennial Ohio State - Denison Conference, May 1992, in memory of Hans Zassenhaus. The topics of these papers represent many modern trends in Ring Theory. The wide variety of methodologies and techniques demonstrated will be valuable in particular to young researchers in the area. Covering a broad range, this book should appeal to a wide spectrum of researchers in algebra and number theory.
Automated and semi-automated manipulation of so-called labelled transition systems has become an important means in discovering flaws in software and hardware systems. Process algebra has been developed to express such labelled transition systems algebraically, which enhances the ways of manipulation by means of equational logic and term rewriting.The theory of process algebra has developed rapidly over the last twenty years, and verification tools have been developed on the basis of process algebra, often in cooperation with techniques related to model checking. This textbook gives a thorough introduction into the basics of process algebra and its applications.
"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher". Zentralblatt fuer Mathematik
This book summarizes the application of linear algebra-based controllers (LABC) for trajectory tracking for practitioners and students across a range of engineering disciplines. It clarifies the necessary steps to apply this straight-forward technique to a non-linear multivariable system, dealing with continuous or discrete time models, and outlines the steps to implement such controllers. In this book, the authors present an approach of the trajectory tracking problem in systems with dead time and in the presence of additive uncertainties and environmental disturbances. Examples of applications of LABC to systems in real operating conditions (mobile robots, marine vessels, quadrotor and pvtol aircraft, chemical reactors and First Order Plus Dead Time systems) illustrate the controller design in such a way that the reader attains an understanding of LABC.
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
Self-contained, and collating for the first time material that has until now only been published in journals - often in Russian - this book will be of interest to functional analysts, especially those with interests in topological vector spaces, and to algebraists concerned with category theory. The closed graph theorem is one of the corner stones of functional analysis, both as a tool for applications and as an object for research. However, some of the spaces which arise in applications and for which one wants closed graph theorems are not of the type covered by the classical closed graph theorem of Banach or its immediate extensions. To remedy this, mathematicians such as Schwartz and De Wilde (in the West) and Rajkov (in the East) have introduced new ideas which have allowed them to establish closed graph theorems suitable for some of the desired applications. In this book, Professor Smirnov uses category theory to provide a very general framework, including the situations discussed by De Wilde, Rajkov and others. General properties of the spaces involved are discussed and applications are provided in measure theory, global analysis and differential equations.
This book contains 58 papers from among the 68 papers presented at the Fifth International Conference on Fibonacci Numbers and Their Applications which was held at the University of St. Andrews, St. Andrews, Fife, Scotland from July 20 to July 24, 1992. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its four predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. June 5, 1993 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Alwyn F. Horadam University of New England Armidale, N.S.W., Australia Andreas N. Philippou Government House Z50 Nicosia, Cyprus xxv THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Campbell, Colin M., Co-Chair Horadam, A.F. (Australia), Co-Chair Phillips, George M., Co-Chair Philippou, A.N. (Cyprus), Co-Chair Foster, Dorothy M.E. Ando, S. (Japan) McCabe, John H. Bergum, G.E. (U.S.A.) Filipponi, P. (Italy) O'Connor, John J.
This book presents the basic concepts and algorithms of computer algebra using practical examples that illustrate their actual use in symbolic computation. A wide range of topics are presented, including: Groebner bases, real algebraic geometry, lie algebras, factorization of polynomials, integer programming, permutation groups, differential equations, coding theory, automatic theorem proving, and polyhedral geometry. This book is a must read for anyone working in the area of computer algebra, symbolic computation, and computer science.
In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, .... . In Non commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira."
Since the early seventies concepts of specification have become central in the whole area of computer science. Especially algebraic specification techniques for abstract data types and software systems have gained considerable importance in recent years. They have not only played a central role in the theory of data type specification, but meanwhile have had a remarkable influence on programming language design, system architectures, arid software tools and environments. The fundamentals of algebraic specification lay a basis for teaching, research, and development in all those fields of computer science where algebraic techniques are the subject or are used with advantage on a conceptual level. Such a basis, however, we do not regard to be a synopsis of all the different approaches and achievements but rather a consistently developed theory. Such a theory should mainly emphasize elaboration of basic concepts from one point of view and, in a rigorous way, reach the state of the art in the field. We understand fundamentals in this context as: 1. Fundamentals in the sense of a carefully motivated introduction to algebraic specification, which is understandable for computer scientists and mathematicians. 2. Fundamentals in the sense of mathematical theories which are the basis for precise definitions, constructions, results, and correctness proofs. 3. Fundamentals in the sense of concepts from computer science, which are introduced on a conceptual level and formalized in mathematical terms.
Onc service malhemalics has rendered Ihe "Et moil ... si ravait au oomment en revcnir. je n'y serais point aU' ' human race. It has put common sense back whcre it belongs, on the topmost shelf next Iules Verne to the dUlty canister IabeUed 'discarded n- sense'. The series is divergent; therefore we may be Eric T. BeU able to do something with it. O. H eaviside Mathematics is a tool for thought, A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other pans and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'are of this series."
A NATO Advanced Study Institute entitled "Algebraic K-theory and Algebraic Topology" was held at Chateau Lake Louise, Lake Louise, Alberta, Canada from December 12 to December 16 of 1991. This book is the volume of proceedings for this meeting. The papers that appear here are representative of most of the lectures that were given at the conference, and therefore present a "snapshot" of the state ofthe K-theoretic art at the end of 1991. The underlying objective of the meeting was to discuss recent work related to the Lichtenbaum-Quillen complex of conjectures, fro both the algebraic and topological points of view. The papers in this volume deal with a range of topics, including motivic cohomology theories, cyclic homology, intersection homology, higher class field theory, and the former telescope conjecture. This meeting was jointly funded by grants from NATO and the National Science Foun dation in the United States. I would like to take this opportunity to thank these agencies for their support. I would also like to thank the other members of the organizing com mittee, namely Paul Goerss, Bruno Kahn and Chuck Weibel, for their help in making the conference successful. This was the second NATO Advanced Study Institute to be held in this venue; the first was in 1987. The success of both conferences owes much to the professionalism and helpfulness of the administration and staff of Chateau Lake Louise."
This is the second of three major volumes which present a comprehensive treatment of the theory of the main classes of special functions from the point of view of the theory of group representations. This volume deals with the properties of special functions and orthogonal polynomials (Legendre, Gegenbauer, Jacobi, Laguerre, Bessel and others) which are related to the class 1 representations of various groups. The tree method for the construction of bases for representation spaces is given. Continuous' bases in the spaces of functions on hyperboloids and cones and corresponding Poisson kernels are found. Also considered are the properties of the q-analogs of classical orthogonal polynomials, related to representations of the Chevalley groups and of special functions connected with fields of p-adic numbers. Much of the material included appears in book form for the first time and many of the topics are presented in a novel way. This volume will be of great interest to specialists in group representations, special functions, differential equations with partial derivatives and harmonic anlysis. Subscribers to the complete set of three volumes will be entitled to a discount of 15%.
This book arose from a conference on "Singularities and Computer Algebra" which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel's 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schoenemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
Algorithmic Algebra studies some of the main algorithmic tools of computer algebra, covering such topics as Grobner bases, characteristic sets, resultants and semialgebraic sets. The main purpose of the book is to acquaint advanced undergraduate and graduate students in computer science, engineering and mathematics with the algorithmic ideas in computer algebra so that they could do research in computational algebra or understand the algorithms underlying many popular symbolic computational systems: Mathematica, Maple or Axiom, for instance. Also, researchers in robotics, solid modeling, computational geometry and automated theorem proving community may find it useful as symbolic algebraic techniques have begun to play an important role in these areas. The book, while being self-contained, is written at an advanced level and deals with the subject at an appropriate depth. The book is accessible to computer science students with no previous algebraic training. Some mathematical readers, on the other hand, may find it interesting to see how algorithmic constructions have been used to provide fresh proofs for some classical theorems. The book also contains a large number of exercises with solutions to selected exercises, thus making it ideal as a textbook or for self-study." |
You may like...
Linear Algebra with Applications, Global…
Steven Leon, Lisette de Pillis
Paperback
R2,178
Discovery Miles 21 780
Theory and Applications of Ordered Fuzzy…
Piotr Prokopowicz, Jacek Czerniak, …
Hardcover
R1,566
Discovery Miles 15 660
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,025
Discovery Miles 10 250
|