![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.
The book is complemented by biographical information. This volume is dedicated to Peter Lancaster, an outstanding expert in operator and matrix theory, numerical analysis and applications, on the occasion of his seventieth birthday. The book contains a selection of recent original research papers in linear algebra and analysis, areas in which Peter Lancaster was very active. The articles are complemented by biographical data and a list of publications. Contributed volume in honor of Peter Lancaster, an outstanding expert in operator theory, matrix theory and numerical analysis. The articles have been carefully selected and refereed and cover topics in linear algebra and analysis where Peter Lancaster was very active.
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference's scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
The book covers various topics of computer algebra methods, algorithms and software applied to scientific computing. An important topic presented in the book, which may be of interest to researchers and engineers, is the application of computer algebra methods to the development of new efficient analytic and numerical solvers, both for ordinary and partial differential equations. A specific feature of the book is an intense use of advanced software systems such as Mathematica, Maple etc. for the solution of problems as outlined above and for the industrial application of computer algebra for simulation. The book will be useful for researchers and engineers who apply advanced computer algebra methods for the solution of their problems.
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ? ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
"There are useful discussions of two nonstandard topics which caught my eye, the method of least squares and Markov processes, consistent with the author's concern for the applications and the expected readership, which render the text useful for business, economics and social science students as well as those in physical sciences and engineering ... the book has great value for self study as well as adoption as a classroom text ... By all means adopt Robinson's text and enjoy spreading the gospel of linear algebra." Frank B CannonitoUniversity of California, Irvine "... it is very carefully written, both from the point of view of mathematical content and style, and readability ... It should therefore be very suitable as a course book as well as for self-tuition." Mathematics Abstracts, Germany
This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation, the KP equation, the nonlinear Schrodinger equation, the Davey and Stewartson equations, the Boussinesq equations in geophysics, the Navier-Stokes equations and the boundary layer problems. In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions, symmetry transformations, linearization techniques and special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.
This engaging review guide and workbook is the ideal tool for sharpening your Algebra I skills! This review guide and workbook will help you strengthen your Algebra I knowledge, and it will enable you to develop new math skills to excel in your high school classwork and on standardized tests. Clear and concise explanations will walk you step by step through each essential math concept. 500 practical review questions, in turn, provide extensive opportunities for you to practice your new skills. If you are looking for material based on national or state standards, this book is your ideal study tool! Features: *Aligned to national standards, including the Common Core State Standards, as well as the standards of non-Common Core states and Canada*Designed to help you excel in the classroom and on standardized tests*Concise, clear explanations offer step-by-step instruction so you can easily grasp key concepts*You will learn how to apply Algebra I to practical situations*500 review questions provide extensive opportunities for you to practice what you've learned
Succeed in the course with this Study Guide for BUSINESS MATH, filled with vocabulary, fill-in-the-blank, true/false, multiple choice, and problem solving questions for each chapter.
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincare series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new. "
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the "reverse order law" problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, PhD students and researchers, but also for a broader readership interested in these topics.
This book is the second volume of an intensive "Russian-style" two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures - fields, rings, modules, algebras, groups, and categories - and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry - topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
This volume is a collection of chapters covering recent advances
in stochastic optimal control theory and algebraic systems theory.
The book will be a useful reference for researchers and graduate
students in systems and control, algebraic systems theory, and
applied mathematics. Requiring only knowledge of
undergraduate-level control and systems theory, the work may be
used as a supplementary textbook in a graduate course on optimal
control or algebraic systems theory.
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
Identity Based Encryption (IBE) is a type of public key encryption and has been intensely researched in the past decade. Identity-Based Encryption summarizes the available research for IBE and the main ideas that would enable users to pursue further work in this area. This book will also cover a brief background on Elliptic Curves and Pairings, security against chosen Cipher text Attacks, standards and more. Advanced-level students in computer science and mathematics who specialize in cryptology, and the general community of researchers in the area of cryptology and data security will find Identity-Based Encryption a useful book. Practitioners and engineers who work with real-world IBE schemes and need a proper understanding of the basic IBE techniques, will also find this book a valuable asset.
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
This volume contains the combined Proceedings of the Second International Meeting on Commutative Algebra and Related Areas (SIMCARA) held from July 22-26, 2019, at the Universidade de Sao Paulo, Sao Carlos, Brazil, and the AMS Special Session on Commutative Algebra, held from September 14-15, 2019, at the University of Wisconsin-Madison, Wisconsin. These two meetings celebrated the combined 150th birthday of Roger and Sylvia Wiegand. The Wiegands have been a fixture in the commutative algebra community, as well as the wider mathematical community, for over 40 years. Articles in this volume cover various areas of factorization theory, homological algebra, ideal theory, representation theory, homological rigidity, maximal Cohen-Macaulay modules, and the behavior of prime spectra under completion, as well as some topics in related fields. The volume itself bears evidence that the area of commutative algebra is a vibrant one and highlights the influence of the Wiegands on generations of researchers. It will be useful to researchers and graduate students.
The book offers a new approach to information theory that is more general then the classical approach by Shannon. The classical definition of information is given for an alphabet of symbols or for a set of mutually exclusive propositions (a partition of the probability space ) with corresponding probabilities adding up to 1. The new definition is given for an arbitrary cover of , i.e. for a set of possibly overlapping propositions. The generalized information concept is called novelty and it is accompanied by two new concepts derived from it, designated as information and surprise, which describe "opposite" versions of novelty, information being related more to classical information theory and surprise being related more to the classical concept of statistical significance. In the discussion of these three concepts and their interrelations several properties or classes of covers are defined, which turn out to be lattices. The book also presents applications of these new concepts, mostly in statistics and in neuroscience.
During the springs of 2011 and 2012, the author was invited by Peking University to give an advanced undergraduate algebra course (once a week over two months each year). This book was written during and for that course. By no way does it claim to be too exhaustive. It was originally intended as a brief introduction to algebra for an extremely pleasant and passionate audience. It certainly reflects some of the author s own tastes, and it was influenced by the feelings and the reactions of the students. Nevertheless, the result covers some advanced undergraduate algebra (rings, ideals, basics of fields theory, algebraic integers, modules, hom and tensor functors, projective modules, etc.) illustrated by numerous examples, counterexamples and exercises. Following a worldwide tradition, the author had planned to conclude by lecturing on the structure of finitely generated modules over principal ideal domains. But during the course, after explaining that the notion of projective modules is more natural than the notion of free modules, it became clear that principal ideal domains needed to be replaced by Dedekind rings; this is much less traditional in the literature but not more difficult."
This book is intended as an introduction to fuzzy algebraic hyperstructures. As the first in its genre, it includes a number of topics, most of which reflect the authors' past research and thus provides a starting point for future research directions. The book is organized in five chapters. The first chapter introduces readers to the basic notions of algebraic structures and hyperstructures. The second covers fuzzy sets, fuzzy groups and fuzzy polygroups. The following two chapters are concerned with the theory of fuzzy Hv-structures: while the third chapter presents the concept of fuzzy Hv-subgroup of Hv-groups, the fourth covers the theory of fuzzy Hv-ideals of Hv-rings. The final chapter discusses several connections between hypergroups and fuzzy sets, and includes a study on the association between hypergroupoids and fuzzy sets endowed with two membership functions. In addition to providing a reference guide to researchers, the book is also intended as textbook for undergraduate and graduate students.
This book addresses college students' weak foundation in algebra, its causes, and potential solutions to improve their long-term success and understanding in mathematics as a whole. The authors, who are experts in a wide variety of fields, emphasize that these difficulties are more complex than just forgotten rules, and offer strategic approaches from a number of angles that will increase the chances of student understanding. Instructors who are frustrated with their students' lack of skills and knowledge at college level will find this volume helpful, as the authors confront the deeper reasons why students have difficulties with Algebra and reveal how to remedy the issue. |
![]() ![]() You may like...
Structural Vibration - A Uniform…
Guoyong Jin, Tiangui Ye, …
Hardcover
Helical Wormlike Chains in Polymer…
Hiromi Yamakawa, Takenao Yoshizaki
Hardcover
Condensed Encyclopedia of Polymer…
Nicholas P. Cheremisinoff
Hardcover
Liquid-Crystal Nanomaterials - Tribology…
Sergey F. Ermakov, Nikolai K. Myshkin
Hardcover
R5,115
Discovery Miles 51 150
Business Intelligence and Agile…
Asim Abdel Rahman El Sheikh, Mouhib Alnoukari
Hardcover
R5,106
Discovery Miles 51 060
Cloud Computing for Geospatial Big Data…
Himansu Das, Rabindra K. Barik, …
Hardcover
R5,119
Discovery Miles 51 190
|