![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
An overview of the most successful algorithms and techniques for solving large, sparse systems of equations and some algorithms and strategies for solving optimization problems. The most important topics dealt with concern iterative methods, especially Krylov methods, ordering techniques, and some iterative optimization tools. The book is a compendium of theoretical and numerical methods for solving large algebraic systems, special emphasis being placed on convergence and numerical behaviour as affected by rounding errors, accuracy in computing solutions for ill-conditioned matrices, preconditioning effectiveness, ordering procedures, stability factors, hybrid procedures and stopping criteria. Recent advances in numerical matrix calculations are presented, especially methods to accelerate the solution of symmetric and unsymmetric linear systems. Convergence analysis of the multi-grid method using a posteriori error estimation in second order elliptic equations are presented. Some inverse problems are also included. Evolution based software is described, such as genetic algorithms and evolution strategies, relations and class hierarchising to improve the exploration of large search spaces and finding near-global optima. Recent developments in messy genetic algorithms are also described. The tutorial nature of the book makes it suitable for mathematicians, computer scientists, engineers and postgraduates.
Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space.Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources. Because of the elementary level of presentation, this book can be treated as an introductory course to electromagnetic theory. Numerous illustrations are helpful in visualizing the exposition. Furthermore, each chapter ends with a list of problems which amplify or further illustrate the fundamental arguments.
This book takes a theoretical perspective on the study of school algebra, in which both semiotics and history occur. The Methodological design allows for the interpretation of specific phenomena and the inclusion of evidence not addressed in more general treatments. The book gives priority to "meaning in use" over "formal meaning." These approaches and others of similar nature lead to a focus on competence rather than a user 's activity with mathematical language.
The study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool lies in the heart of Clifford analysis. The focus is on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. At the present time, the study of Clifford algebra and Clifford analysis has grown into a major research field. There are two sources of papers in this collection. One is from a satellite conference to the ICM 2002 in Beijing, held August 15-18 at the University of Macau; and the other stems from invited contributions by top-notch experts in the field.
This book arose from a conference on "Singularities and Computer Algebra" which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel's 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schoenemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology at the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
Building on the author's previous edition on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996), this book offers a refreshingly concise text suitable for a standard course in linear algebra, presenting a carefully selected array of essential topics that can be thoroughly covered in a single semester. Although the exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, it notably deviates in providing an early emphasis on the geometric foundations of linear algebra. This gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts covered later in the course. The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book. Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.
This volume proposes and explores a new definition of logarithmic mappings as invertible selectors of multifunctions induced by linear operators with domains and ranges in an algebra over a field of characteristic zero. Several important previously published results are presented. Amongst the applications of logarithmic and antilogarithmic mappings are the solution of linear and nonlinear equations in algebras of square matrices. Some results may also provide numerical algorithms for the approximation of solutions. Audience: Research mathematicians and other scientists of other disciplines whose work involves the solution of equations.
'Et moi, .... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alit.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bcll o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nOD linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The purpose of the book is to take stock of the situation
concerning Algebra via Category Theory in the last fifteen years,
where the new and synthetic notions of Mal'cev, protomodular,
homological and semi-abelian categories emerged. These notions
force attention on the fibration of points and allow a unified
treatment of the main algebraic: homological lemmas, Noether
isomorphisms, commutator theory.
This book gives a comprehensive account of Mori¿s Program, that is an approach to the following problem: classify all the projective varieties X in P^n over C up to isomorphism. Mori¿s Program is a fusion of the so-called Minimal Model Program and the Iitaka Program toward the biregular and/or birational classification of higher dimensional algebraic varieties. The author presents this theory in an easy and understandable way with lots of background motivation. It is the first book in this extremely important and active area of research and will become a key resource for graduate students.
Mathematical summary for Digital Signal Processing Applications with Matlab consists of Mathematics which is not usually dealt in the DSP core subject, but used in DSP applications. Matlab programs with illustrations are given for the selective topics such as generation of Multivariate Gaussian distributed sample outcomes, Bacterial foraging algorithm, Newton's iteration, Steepest descent algorithm, etc. are given exclusively in the separate chapter. Also Mathematical summary for Digital Signal Processing Applications with Matlab is written in such a way that it is suitable for Non-Mathematical readers and is very much suitable for the beginners who are doing research in Digital Signal Processing.
Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behavoir of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis. The book includes classical topics as well as results obtained and methods developed only in the last few years. Though employing modern tools, the exposition is elementary and aims at pointing out the mathematical background behind some interesting phenomena one encounters when working with large Toeplitz matrices. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
The theory of finite fields is of central importance in engineering and computer science, because of its applications to error-correcting codes, cryptography, spread-spectrum communications, and digital signal processing. Though not inherently difficult, this subject is almost never taught in depth in mathematics courses, (and even when it is the emphasis is rarely on the practical aspect). Indeed, most students get a brief and superficial survey which is crammed into a course on error-correcting codes. It is the object of this text to remedy this situation by presenting a thorough introduction to the subject which is completely sound mathematically, yet emphasizes those aspects of the subject which have proved to be the most important for applications. This book is unique in several respects. Throughout, the emphasis is on fields of characteristic 2, the fields on which almost all applications are based. The importance of Euclid's algorithm is stressed early and often. Berlekamp's polynomial factoring algorithm is given a complete explanation. The book contains the first treatment of Berlekamp's 1982 bit-serial multiplication circuits, and concludes with a thorough discussion of the theory of m-sequences, which are widely used in communications systems of many kinds.
This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others."
The theory of automorphisms and derivations of associative rings is a direct descendant of the development of classical Galois theory and the theory of invariants. This volume presents a comprehensive overview of the methods and results of that theory, which has been greatly enriched during the last twenty years. Some of the material included appears for the first time. Among the problems discussed in this book are the following: construction of a Galois theory for prime and semiprime rings and its application to domains and free algebras; investigation of the problems of the algebraic dependence of automorphisms and derivations; studies of the fixed rings for finite groups and rings of constants for differential Lie algebras acting on the rings; non-commutative invariants of linear groups; theorems of finite groups acting on modular lattices; actions of Hopf algebras. The monograph is meant for specialists in algebra, but it can also be useful for a wider range of mathematicians. The inclusions in the book of the latest achievements on the structural theory of rings with generalized identities makes it desirable reading for graduate students as well.
A smart city utilizes ICT technologies to improve the working effectiveness, share various data with the citizens, and enhance political assistance and societal wellbeing. The fundamental needs of a smart and sustainable city are utilizing smart technology for enhancing municipal activities, expanding monetary development, and improving citizens' standards of living. Data-Driven Mathematical Modeling in Smart Cities discusses new mathematical models in smart and sustainable cities using big data, visualization tools in mathematical modeling, machine learning-based mathematical modeling, and more. It further delves into privacy and ethics in data analysis. Covering topics such as deep learning, optimization-based data science, and smart city automation, this premier reference source is an excellent resource for mathematicians, statisticians, computer scientists, civil engineers, government officials, students and educators of higher education, librarians, researchers, and academicians.
The first interactive course covering first and second year algebra. Starting from such fundamental topics as integers and divisions, modular arithmetic and polynomials the content extends to rings, fields and permutation groups. The hypertext is written in Java-enhanced HTML, and Java applets illustrate the theory while also contributing interactive calculators for computing with integers, polynomials and permutations. The computer algebra system GAP is integrated throughout, allowing the calculation and manipulation of mathematical objects. In addition, collections for Mathematica notebooks and Maple worksheets review the algorithms presented. Multiple choice exercises provide users with instant feedback, while facilities for monitoring students and a bulletin board complete this digital course.
http://www.worldscientific.com/worldscibooks/10.1142/0131
http://www.worldscientific.com/worldscibooks/10.1142/0131
A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept has been extended to collections of bounded linear operators on Banach spaces: such a collection is defined to be triangularizable if there is a maximal chain of subspaces of the Banach space, each of which is invariant under every member of the collection. Most of the classical results have been generalized to compact operators, and there are also recent theorems in the finite-dimensional case. This book is the first comprehensive treatment of triangularizability in both the finite and infinite-dimensional cases. It contains numerous very recent results and new proofs of many of the classical theorems. It provides a thorough background for research in both the linear-algebraic and operator-theoretic aspects of triangularizability and related areas. More generally, the book will be useful to anyone interested in matrices or operators, as many of the results are linked to other topics such as spectral mapping theorems, properties of spectral radii and traces, and the structure of semigroups and algebras of operators. It is essentially self-contained modulo solid courses in linear algebra (for the first half) and functional analysis (for the second half), and is therefore suitable as a text or reference for a graduate course.
In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity.
This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.
Both modern mathematical music theory and computer science are strongly influenced by the theory of categories and functors. One outcome of this research is the data format of denotators, which is based on set-valued presheaves over the category of modules and diaffine homomorphisms. The functorial approach of denotators deals with generalized points in the form of arrows and allows the construction of a universal concept architecture. This architecture is ideal for handling all aspects of music, especially for the analysis and composition of highly abstract musical works. This book presents an introduction to the theory of module categories and the theory of denotators, as well as the design of a software system, called Rubato Composer, which is an implementation of the category-theoretic concept framework. The application is written in portable Java and relies on plug-in components, so-called rubettes, which may be combined in data flow networks for the generation and manipulation of denotators. The Rubato Composer system is open to arbitrary extension and is freely available under the GPL license. It allows the developer to build specialized rubettes for tasks that are of interest to composers, who in turn combine them to create music. It equally serves music theorists, who use them to extract information from and manipulate musical structures. They may even develop new theories by experimenting with the many parameters that are at their disposal thanks to the increased flexibility of the functorial concept architecture. Two contributed chapters by Guerino Mazzola and Florian Thalmann illustrate the application of the theory as well as the software in the development of compositional tools and the creation of a musical work with the help of the Rubato framework.
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry. |
You may like...
Spectral and High Order Methods for…
Robert M. Kirby, Martin Berzins, …
Hardcover
R4,955
Discovery Miles 49 550
The Central Intelligence Agency…
Athan G. Theoharis, Richard H. Immerman, …
Hardcover
|