![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.
This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics. Contents Rigid Body Equations of Motion and Their Integration The Euler - Poisson Equations and Their Generalizations The Kirchhoff Equations and Related Problems of Rigid Body Dynamics Linear Integrals and Reduction Generalizations of Integrability Cases. Explicit Integration Periodic Solutions, Nonintegrability, and Transition to Chaos Appendix A : Derivation of the Kirchhoff, Poincare - Zhukovskii, and Four-Dimensional Top Equations Appendix B: The Lie Algebra e(4) and Its Orbits Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev - Chaplygin Top Appendix D: The Hess Case and Quantization of the Rotation Number Appendix E: Ferromagnetic Dynamics in a Magnetic Field Appendix F: The Landau - Lifshitz Equation, Discrete Systems, and the Neumann Problem Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids
This book concentrates on the topic of evaluation of Jacobians in some specific linear as well as nonlinear matrix transformations, in the real and complex cases, which are widely applied in the statistical, physical, engineering, biological and social sciences. It aims to develop some techniques systematically so that anyone with a little exposure to multivariable calculus can easily follow the steps and understand the various methods by which the Jacobians in complicated matrix transformations are evaluated. The material is developed slowly, with lots of worked examples, aimed at self-study. Some exercises are also given, at the end of each section.The book is a valuable reference for statisticians, engineers, physicists, econometricians, applied mathematicians and people working in many other areas. It can be used for a one-semester graduate level course on Jacobians and functions of matrix argument.
This revised edition presents the relevant aspects of
transformational geometry, matrix algebra, and calculus to those
who may be lacking the necessary mathematical foundations of
applied multivariate analysis. It brings up-to-date many
definitions of mathematical concepts and their operations. It also
clearly defines the relevance of the exercises to concerns within
the business community and the social and behavioral sciences.
Readers gain a technical background for tackling
applications-oriented multivariate texts and receive a geometric
perspective for understanding multivariate methods."Mathematical
Tools for Applied Multivariate Analysis, Revised Edition
illustrates major concepts in matrix algebra, linear structures,
and eigenstructures geometrically, numerically, and algebraically.
The authors emphasize the applications of these techniques by
discussing potential solutions to problems outlined early in the
book. They also present small numerical examples of the various
concepts.
Packed with new material and research, this second edition of George Friedman's bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the "kernel of constraint" trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan's PhD dissertation in 2011, titled "Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models." Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory." --Cornelius T. Leondes, UCLA "Groundbreaking work. ... Friedman's accomplishment represents engineering at its finest. ... The credibility of the theory rests upon the formal proofs which are interspersed among the illuminating hypothetical dialog sequences between manager and analyst, which bring out distinctions that the organization must face, en route to accepting Friedman's work as essential to achieve quality control in developing and applying large models." --John N. Warfield
This volume contains proceedings of two conferences held in Toronto (Canada) and Kozhikode (India) in 2016 in honor of the 60th birthday of Professor Kumar Murty. The meetings were focused on several aspects of number theory: The theory of automorphic forms and their associated L-functions Arithmetic geometry, with special emphasis on algebraic cycles, Shimura varieties, and explicit methods in the theory of abelian varieties The emerging applications of number theory in information technology Kumar Murty has been a substantial influence in these topics, and the two conferences were aimed at honoring his many contributions to number theory, arithmetic geometry, and information technology.
The purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces.
This book combines, in a novel and general way, an extensive development of the theory of families of commuting matrices with applications to zero-dimensional commutative rings, primary decompositions and polynomial system solving. It integrates the Linear Algebra of the Third Millennium, developed exclusively here, with classical algorithmic and algebraic techniques. Even the experienced reader will be pleasantly surprised to discover new and unexpected aspects in a variety of subjects including eigenvalues and eigenspaces of linear maps, joint eigenspaces of commuting families of endomorphisms, multiplication maps of zero-dimensional affine algebras, computation of primary decompositions and maximal ideals, and solution of polynomial systems. This book completes a trilogy initiated by the uncharacteristically witty books Computational Commutative Algebra 1 and 2 by the same authors. The material treated here is not available in book form, and much of it is not available at all. The authors continue to present it in their lively and humorous style, interspersing core content with funny quotations and tongue-in-cheek explanations.
Exterior Algebras: Elementary Tribute to Grassmann's Ideas provides the theoretical basis for exterior computations. It first addresses the important question of constructing (pseudo)-Euclidian Grassmmann's algebras. Then, it shows how the latter can be used to treat a few basic, though significant, questions of linear algebra, such as co-linearity, determinant calculus, linear systems analyzing, volumes computations, invariant endomorphism considerations, skew-symmetric operator studies and decompositions, and Hodge conjugation, amongst others.
The author introduces the supersymmetric localization technique, a new approach for computing path integrals in quantum field theory on curved space (time) defined with interacting Lagrangian. The author focuses on a particular quantity called the superconformal index (SCI), which is defined by considering the theories on the product space of two spheres and circles, in order to clarify the validity of so-called three-dimensional mirror symmetry, one of the famous duality proposals. In addition to a review of known results, the author presents a new definition of SCI by considering theories on the product space of real-projective space and circles. In this book, he explains the concept of SCI from the point of view of quantum mechanics and gives localization computations by reducing field theoretical computations to many-body quantum mechanics. He applies his new results of SCI with real-projective space to test three-dimensional mirror symmetry, one of the dualities of quantum field theory. Real-projective space is known to be an unorientable surface like the Mobius strip, and there are many exotic effects resulting from Z2 holonomy of the surface. Thanks to these exotic structures, his results provide completely new evidence of three-dimensional mirror symmetry. The equivalence expected from three-dimensional mirror symmetry is transformed into a conjectural non-trivial mathematical identity through the new SCI, and he performs the proof of the identity using a q-binomial formula.
This book offers a self-contained guide to the theory and main applications of soft sets. It introduces readers to the basic concepts, the algebraic and topological structures, as well as hybrid structures, such as fuzzy soft sets and intuitionistic fuzzy sets. The last part of the book explores a range of interesting applications in the fields of decision-making, pattern recognition, and data science. All in all, the book provides graduate students and researchers in mathematics and various applied science fields with a comprehensive and timely reference guide to soft sets.
Like the first Abel Symposium, held in 2004, the Abel Symposium 2015 focused on operator algebras. It is interesting to see the remarkable advances that have been made in operator algebras over these years, which strikingly illustrate the vitality of the field. A total of 26 talks were given at the symposium on a variety of themes, all highlighting the richness of the subject. The field of operator algebras was created in the 1930s and was motivated by problems of quantum mechanics. It has subsequently developed well beyond its initial intended realm of applications and expanded into such diverse areas of mathematics as representation theory, dynamical systems, differential geometry, number theory and quantum algebra. One branch, known as "noncommutative geometry", has become a powerful tool for studying phenomena that are beyond the reach of classical analysis. This volume includes research papers that present new results, surveys that discuss the development of a specific line of research, and articles that offer a combination of survey and research. These contributions provide a multifaceted portrait of beautiful mathematics that both newcomers to the field of operator algebras and seasoned researchers alike will appreciate.
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn't require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
The book provides an introduction of very recent results about the tensors and mainly focuses on the authors' work and perspective. A systematic description about how to extend the numerical linear algebra to the numerical multi-linear algebra is also delivered in this book. The authors design the neural network model for the computation of the rank-one approximation of real tensors, a normalization algorithm to convert some nonnegative tensors to plane stochastic tensors and a probabilistic algorithm for locating a positive diagonal in a nonnegative tensors, adaptive randomized algorithms for computing the approximate tensor decompositions, and the QR type method for computing U-eigenpairs of complex tensors. This book could be used for the Graduate course, such as Introduction to Tensor. Researchers may also find it helpful as a reference in tensor research.
The second part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. This volume is a survey of most aspects of Clifford analysis. Topics range from applications such as complex-distance potential theory, supersymmetry, and fluid dynamics to Fourier analysis, the study of boundary value problems, and applications, to mathematical physics and Schwarzian derivatives in Euclidean space. Among the mathematical topics examined are generalized Dirac operators, holonomy groups, monogenic and hypermonogenic functions and their derivatives, quaternionic Beltrami equations, Fourier theory under Mobius transformations, Cauchy-Reimann operators, and Cauchy type integrals.
The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. This volume is devoted specifically to the mathematical aspects of Clifford algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, "q"-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.
The book provides a state-of-art overview of computational methods for nonlinear aeroelasticity and load analysis, focusing on key techniques and fundamental principles for CFD/CSD coupling in temporal domain. CFD/CSD coupling software design and applications of CFD/CSD coupling techniques are discussed in detail as well. It is an essential reference for researchers and students in mechanics and applied mathematics.
This monograph studies optimization problems for rigid punches in elastic media and for high-speed penetration of rigid strikers into deformed elastoplastic, concrete, and composite media using variational calculations, tools from functional analysis, and stochastic and min-max (guaranteed) optimization approaches with incomplete data. The book presents analytical and numerical results developed by the authors during the last ten years.
This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations . |
![]() ![]() You may like...
Controlling Epidemics With Mathematical…
Abraham Varghese, Eduardo M. Lacap, Jr., …
Hardcover
R7,243
Discovery Miles 72 430
Recent Advances in Numerical Methods for…
Maria Luz Munoz-Ruiz, Carlos Pares, …
Hardcover
R4,375
Discovery Miles 43 750
Streetcar Named Desire: York Notes…
Tennessee Williams
Paperback
![]()
Integral Transforms and Applications
Nita H. Shah, Monika K. Naik
Hardcover
R4,812
Discovery Miles 48 120
|