|
|
Books > Science & Mathematics > Mathematics > Algebra > General
This book consists of the expanded notes from an upper level linear
algebra course given some years ago by the author. Each section, or
lecture, covers about a week's worth of material and includes a
full set of exercises of interest. It should feel like a very
readable series of lectures. The notes cover all the basics of
linear algebra but from a mature point of view. The author starts
by briefly discussing fields and uses those axioms to define and
explain vector spaces. Then he carefully explores the relationship
between linear transformations and matrices. Determinants are
introduced as volume functions and as a way to determine whether
vectors are linearly independent. Also included is a full chapter
on bilinear forms and a brief chapter on infinite dimensional
spaces.The book is very well written, with numerous examples and
exercises. It includes proofs and techniques that the author has
developed over the years to make the material easier to understand
and to compute.
This book consists of the expanded notes from an upper level linear
algebra course given some years ago by the author. Each section, or
lecture, covers about a week's worth of material and includes a
full set of exercises of interest. It should feel like a very
readable series of lectures. The notes cover all the basics of
linear algebra but from a mature point of view. The author starts
by briefly discussing fields and uses those axioms to define and
explain vector spaces. Then he carefully explores the relationship
between linear transformations and matrices. Determinants are
introduced as volume functions and as a way to determine whether
vectors are linearly independent. Also included is a full chapter
on bilinear forms and a brief chapter on infinite dimensional
spaces.The book is very well written, with numerous examples and
exercises. It includes proofs and techniques that the author has
developed over the years to make the material easier to understand
and to compute.
Complex analysis is found in many areas of applied mathematics,
from fluid mechanics, thermodynamics, signal processing, control
theory, mechanical and electrical engineering to quantum mechanics,
among others. And of course, it is a fundamental branch of pure
mathematics. The coverage in this text includes advanced topics
that are not always considered in more elementary texts. These
topics include, a detailed treatment of univalent functions,
harmonic functions, subharmonic and superharmonic functions,
Nevanlinna theory, normal families, hyperbolic geometry, iteration
of rational functions, and analytic number theory. As well, the
text includes in depth discussions of the Dirichlet Problem,
Green's function, Riemann Hypothesis, and the Laplace transform.
Some beautiful color illustrations supplement the text of this most
elegant subject.
The book systematically introduces smart power system design and
its infrastructure, platform and operating standards. It focuses on
multi-objective optimization and illustrates where the intelligence
of the system lies. With abundant project data, this book is a
practical guideline for engineers and researchers in electrical
engineering, as well as power network designers and managers in
administration.
This book is the second of a three-volume set of books on the
theory of algebras, a study that provides a consistent framework
for understanding algebraic systems, including groups, rings,
modules, semigroups and lattices. Volume I, first published in the
1980s, built the foundations of the theory and is considered to be
a classic in this field. The long-awaited volumes II and III are
now available. Taken together, the three volumes provide a
comprehensive picture of the state of art in general algebra today,
and serve as a valuable resource for anyone working in the general
theory of algebraic systems or in related fields. The two new
volumes are arranged around six themes first introduced in Volume
I. Volume II covers the Classification of Varieties, Equational
Logic, and Rudiments of Model Theory, and Volume III covers Finite
Algebras and their Clones, Abstract Clone Theory, and the
Commutator. These topics are presented in six chapters with
independent expositions, but are linked by themes and motifs that
run through all three volumes.
Spaces of homogeneous type were introduced as a generalization to
the Euclidean space and serve as a suffi cient setting in which one
can generalize the classical isotropic Harmonic analysis and
function space theory. This setting is sometimes too general, and
the theory is limited. Here, we present a set of fl exible
ellipsoid covers of n that replace the Euclidean balls and support
a generalization of the theory with fewer limitations.
The book will benefit a reader with a background in physical
sciences and applied mathematics interested in the mathematical
models of genetic evolution. In the first chapter, we analyze
several thought experiments based on a basic model of stochastic
evolution of a single genomic site in the presence of the factors
of random mutation, directional natural selection, and random
genetic drift. In the second chapter, we present a more advanced
theory for a large number of linked loci. In the third chapter, we
include the effect of genetic recombination into account and find
out the advantage of sexual reproduction for adaptation. These
models are useful for the evolution of a broad range of asexual and
sexual populations, including virus evolution in a host and a host
population.
Linear Algebra: An Introduction With Mathematica uses a
matrix-based presentation and covers the standard topics any
mathematician will need to understand linear algebra while using
Mathematica. Development of analytical and computational skills is
emphasized, and worked examples provide step-by-step methods for
solving basic problems using Mathematica. The subject's rich
pertinence to problem solving across disciplines is illustrated
with applications in engineering, the natural sciences, computer
animation, and statistics.
This book includes discussions related to solutions of such tasks
as: probabilistic description of the investment function;
recovering the income function from GDP estimates; development of
models for the economic cycles; selecting the time interval of
pseudo-stationarity of cycles; estimating
characteristics/parameters of cycle models; analysis of accuracy of
model factors. All of the above constitute the general principles
of a theory explaining the phenomenon of economic cycles and
provide mathematical tools for their quantitative description. The
introduced theory is applicable to macroeconomic analyses as well
as econometric estimations of economic cycles.
Since 1991, the group of ring theorists from China and Japan,
joined by Korea from 1995 onwards, took turns to hold the
quadrennial international conferences (sometimes also referred to
as symposiums). As the proceedings of the eighth conference held in
Nagoya, Japan in 2019, this volume consists of a collection of
articles by invited speakers (survey) and general speakers (survey
and original), all of which were refereed by world experts.The
survey articles show the trends of current research and offer
clear, thorough explanations that are ideal for researchers also in
other specialized areas of ring theory. The original articles
display new results, ideas and tools for research investigations in
ring theory.The articles cover major areas in ring theory, such as:
structures of rings, module theory, homological algebra, groups,
Hopf algebras, Lie theory, representation theory of rings,
(non-commutative) algebraic geometry, commutative rings
(structures, representations), amongst others.This volume is a
useful resource for researchers - both beginners and advanced
experts - in ring theory.
Algebra, as we know it today, consists of many different ideas,
concepts and results. A reasonable estimate of the number of these
different items would be somewhere between 50,000 and 200,000. Many
of these have been named and many more could (and perhaps should)
have a name or a convenient designation. Even the nonspecialist is
likely to encounter most of these, either somewhere in the
literature, disguised as a definition or a theorem or to hear about
them and feel the need for more information. If this happens, one
should be able to find enough information in this Handbook to judge
if it is worthwhile to pursue the quest.
In addition to the primary information given in the Handbook, there
are references to relevant articles, books or lecture notes to help
the reader. An excellent index has been included which is extensive
and not limited to definitions, theorems etc.
The Handbook of Algebra will publish articles as they are received
and thus the reader will find in this third volume articles from
twelve different sections. The advantages of this scheme are
two-fold: accepted articles will be published quickly and the
outline of the Handbook can be allowed to evolve as the various
volumes are published.
A particularly important function of the Handbook is to provide
professional mathematicians working in an area other than their own
with sufficient information on the topic in question if and when it
is needed.
- Thorough and practical source of information
- Provides in-depth coverage of new topics in algebra
- Includes references to relevant articles, books and lecture notes
This book presents material in two parts. Part one provides an
introduction to crossed modules of groups, Lie algebras and
associative algebras with fully written out proofs and is suitable
for graduate students interested in homological algebra. In part
two, more advanced and less standard topics such as crossed modules
of Hopf algebra, Lie groups, and racks are discussed as well as
recent developments and research on crossed modules.
This book is the second edition of the first complete study and
monograph dedicated to singular traces. The text offers, due to the
contributions of Albrecht Pietsch and Nigel Kalton, a complete
theory of traces and their spectral properties on ideals of compact
operators on a separable Hilbert space. The second edition has been
updated on the fundamental approach provided by Albrecht Pietsch.
For mathematical physicists and other users of Connes'
noncommutative geometry the text offers a complete reference to
traces on weak trace class operators, including Dixmier traces and
associated formulas involving residues of spectral zeta functions
and asymptotics of partition functions.
|
|