![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.
This book gives an overview of research on graphs associated with commutative rings. The study of the connections between algebraic structures and certain graphs, especially finite groups and their Cayley graphs, is a classical subject which has attracted a lot of interest. More recently, attention has focused on graphs constructed from commutative rings, a field of study which has generated an extensive amount of research over the last three decades. The aim of this text is to consolidate this large body of work into a single volume, with the intention of encouraging interdisciplinary research between algebraists and graph theorists, using the tools of one subject to solve the problems of the other. The topics covered include the graphical and topological properties of zero-divisor graphs, total graphs and their transformations, and other graphs associated with rings. The book will be of interest to researchers in commutative algebra and graph theory and anyone interested in learning about the connections between these two subjects.
This book describes the latest Russian research covering the structure and algorithmic properties of Boolean algebras from the algebraic and model-theoretic points of view. A significantly revised version of the author's Countable Boolean Algebras (Nauka, Novosibirsk, 1989), the text presents new results as well as a selection of open questions on Boolean algebras. Other current features include discussions of the Kottonen algebras in enrichments by ideals and automorphisms, and the properties of the automorphism groups.
The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.
This book presents the general theory of categorical closure operators together with examples and applications to the most common categories, such as topological spaces, fuzzy topological spaces, groups, and abelian groups. The main aim of the theory is to develop a categorical characterization of the classical basic concepts in topology via the newly introduced concept of categorical closure operators. This permits many topological ideas to be introduced in a topology-free environment and imported afterwards into a new category, which often yields interesting new insights into its structure. The first part of the book deals with the general theory, starting with basic definitions and gradually moving to more advanced properties. The second part includes applications to the classical concepts of epimorphisms, separation, compactness and connectedness. Every chapter ends with exercises. A comprehensive list of references for the reader who wants to consult original works and a good index complete the book. "Categorical Closure Operators" is self-contained and can be considered as a graduate level text for topics courses in category theory, algebra, and topology. The book appeals mainly to graduate students and researchers in category theory and categorical topology, and to those interested in categorical methods applied to the most common concrete categories. The reader is expected to have some basic knowledge of algebra, topology and category theory; however, all recurrent categorical concepts are included in a preliminary chapter.
Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.
This volume is devoted to the development of an algebraic model of databases. The first chapter presents a general introduction. The following sixteen chapters are divided into three main parts. Part I deals with various aspects of universal algebra. The chapters of Part I discuss topics such as sets, algebras and models, fundamental structures, categories, the category of sets, topoi, fuzzy sets, varieties of algebras, axiomatic classes, category algebra and algebraic theories. Part II deals with different approaches to the algebraization of predicate calculus. This material is intended to be applied chiefly to databases, although some discussion of pure algebraic applications is also given. Discussed here are topics such as Boolean algebras and propositional calculus, Halmos algebras and predicate calculus, connections with model theory, and the categorial approach to algebraic logic. Part III is concerned specifically with the algebraic model of databases, which considers the database as an algebraic structure. Topics dealt with in this part are the algebraic aspects of databases, their equivalence and restructuring, symmetries and the Galois theory of databases, and constructions in database theory. The volume closes with a discussion and conclusions, and an extensive bibliography. For mathematicians, computer scientists and database engineers, with an interest in applications of algebra and logic.
This is the first monograph on rings closed to von Neumann regular rings. The following classes of rings are considered: exchange rings, pi-regular rings, weakly regular rings, rings with comparability, V-rings, and max rings. Every Artinian or von Neumann regular ring A is an exchange ring (this means that for every one of its elements a, there exists an idempotent e of A such that aA contains eA and (1-a)A contains (1-e)A). Exchange rings are very useful in the study of direct decompositions of modules, and have many applications to theory of Banach algebras, ring theory, and K-theory. In particular, exchange rings and rings with comparability provide a key to a number of outstanding cancellation problems for finitely generated projective modules. Every von Neumann regular ring is a weakly regular pi-regular ring (a ring A is pi-regular if for every one of its elements a, there is a positive integer n such that a is contained in aAa) and every Artinian ring is a pi-regular max ring (a ring is a max ring if every one of its nonzero modules has a maximal submodule). Thus many results on finite-dimensional algebras and regular rings are extended to essentially larger classes of rings. Starting from a basic understanding of ring theory, the theory of rings close to regular is presented and accompanied with complete proofs. The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography.
This book contains nineteen papers from among the twenty-five papers presented at the Second International Conference on Fibonacci Numbers and Their Applications. These papers have been selected after a careful review by well known referee's in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers are their unifying bond. It is anticipated that this book will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. October 1987 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Andreas N. Philippou University of Patras Patras, Greece Alwyn F. Horadam University of New England Armidale, N.S.W., Australia xiii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERN A TIONAL COMMITTEE Bergum, G., Chairman Philippou, A. (Greece), Chairman Edgar, H., Co-chalrman Horadam, A. (Australia), Co-chalrman Bergum, G. (U.s.A.) Thoro, D. Kiss, P. (Hungary) Johnson, M. Long, C. (U.S.A.) Lange, L.
This book presents advances in matrix and tensor data processing in
the domain of signal, image and information processing. The
theoretical mathematical approaches are discusses in the context of
potential applications in sensor and cognitive systems engineering.
The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.
From the reviews of the first edition: "It is certainly no exaggeration to say that A Singular Introduction to Commutative Algebra aims to lead a further stage in the computational revolution in commutative algebra . Among the great strengths and most distinctive features is a new, completely unified treatment of the global and local theories. making it one of the most flexible and most efficient systems of its type....another strength of Greuel and Pfister's book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic....Greuel and Pfister have written a distinctive and highly useful book that should be in the library of every commutative algebraist and algebraic geometer, expert and novice alike." J.B. Little, MAA, March 2004 The second edition is substantially enlarged by a chapter on Groebner bases in non-commtative rings, a chapter on characteristic and triangular sets with applications to primary decomposition and polynomial solving and an appendix on polynomial factorization including factorization over algebraic field extensions and absolute factorization, in the uni- and multivariate case."
The book deals with dynamical systems, generated by linear mappings of finite dimensional spaces and their applications. These systems have a relatively simple structure from the point of view of the modern dynamical systems theory. However, for the dynamical systems of this sort, it is possible to obtain explicit answers to specific questions being useful in applications. The considered problems are natural and look rather simple, but in reality in the course of investigation, they confront users withplenty of subtle questions and their detailed analysis needs a substantial effort. The problems arising are related to linear algebra and dynamical systems theory, and therefore, the book can be considered as a natural amplification, refinement and supplement to linear algebra and dynamical systems theory textbooks."
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
ThesubjectofthisbookisSemi-In?niteAlgebra,ormorespeci?cally,Semi-In?nite Homological Algebra. The term "semi-in?nite" is loosely associated with objects that can be viewed as extending in both a "positive" and a "negative" direction, withsomenaturalpositioninbetween,perhapsde?nedupto a"?nite"movement. Geometrically, this would mean an in?nite-dimensional variety with a natural class of "semi-in?nite" cycles or subvarieties, having always a ?nite codimension in each other, but in?nite dimension and codimension in the whole variety [37]. (For further instances of semi-in?nite mathematics see, e. g. , [38] and [57], and references below. ) Examples of algebraic objects of the semi-in?nite type range from certain in?nite-dimensional Lie algebras to locally compact totally disconnected topolo- cal groups to ind-schemes of ind-in?nite type to discrete valuation ?elds. From an abstract point of view, these are ind-pro-objects in various categories, often - dowed with additional structures. One contribution we make in this monograph is the demonstration of another class of algebraic objects that should be thought of as "semi-in?nite", even though they do not at ?rst glance look quite similar to the ones in the above list. These are semialgebras over coalgebras, or more generally over corings - the associative algebraic structures of semi-in?nite nature. The subject lies on the border of Homological Algebra with Representation Theory, and the introduction of semialgebras into it provides an additional link with the theory of corings [23], as the semialgebrasare the natural objects dual to corings.
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
The book describes the history of Jordan algebras, and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. To keep the exposition elementary, the structure theory is developed for linear Jordan algebras (where the scalar ring contains 1/2, avoiding the nuisancy distractions of characteristic 2), though the modern quadratic methods are used throughout. Both the quadratic methods and the Zelmanov results go beyond the previous textbooks on Jordan Theory, written in the 1960's and early 1980's before the theory reached its final form. The book is written to serve either as a text for a 2nd year graduate course, or for independent reading, for students who need or wish to know a bit about Jordan algebras. It is not primaily aimed at experts or students going on to do research in the area, and no knowledge is required beyond standard first-year graduate algebra courses. General students of algebra can profit from exposure to nonassociative algebras, and students or professional mathematicians working in areas such as Lie algebras, differential geometry Äsymmetric spaces or bounded symmetric domainsÜ, functional analysis ÄJB algebras and triplesÜ, or exceptional groups and geometry Ärelated to the 27- dimensional Albert algebraÜ can also profit from acquaintance with the material. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas.
This is a textbook for a course (or self-instruction) in cryptography with emphasis on algebraic methods. The first half of the book is a self-contained informal introduction to areas of algebra, number theory, and computer science that are used in cryptography. Most of the material in the second half - "hidden monomial" systems, combinatorial-algebraic systems, and hyperelliptic systems - has not previously appeared in monograph form. The Appendix by Menezes, Wu, and Zuccherato gives an elementary treatment of hyperelliptic curves. This book is intended for graduate students, advanced undergraduates, and scientists working in various fields of data security.
This is a memorial volume dedicated to A. L. S. Corner, previously Professor in Oxford, who published important results on algebra, especially on the connections of modules with endomorphism algebras. The volume contains refereed contributions which are related to the work of Corner.It contains also an unpublished extended paper of Corner himself. A memorial volume with important contributions related to algebra.
This popular and successful text was originally written for a one-semester course in linear algebra at the sophomore undergraduate level. Students at this level generally have had little contact with complex numbers or abstract mathematics, so the book deals almost exclusively with real finite dimensional vector spaces, but in a setting and formulation that permits easy generalization to abstract vector spaces. The goal of the first two editions was the principal axis theorem for real symmetric linear transformation. The principal axis theorem becomes the first of two goals for this new edition, which follows a straight path to its solution. A wide selection of examples of vector spaces and linear transformation is presented to serve as a testing ground for the theory. In the second edition, a new chapter on Jordan normal form was added which reappears here in expanded form as the second goal of this new edition, along with applications to differential systems. To achieve the principal axis theorem in one semester a straight path to these two goals is followed. As compensation, there is a wide selection of examples and exercises. In addition, the author includes an introduction to invariant theory to show students that linear algebra alone is not capable of solving these canonical forms problems. The book continues to offer a compact, but mathematically clean introduction to linear algebra with particular emphasis on topics that are used in abstract algebra, the theory of differential equations, and group representation theory.
There has been considerable interest recently in the subject of patterns in permutations and words, a new branch of combinatorics with its roots in the works of Rotem, Rogers, and Knuth in the 1970s. Consideration of the patterns in question has been extremely interesting from the combinatorial point of view, and it has proved to be a useful language in a variety of seemingly unrelated problems, including the theory of Kazhdan-Lusztig polynomials, singularities of Schubert varieties, interval orders, Chebyshev polynomials, models in statistical mechanics, and various sorting algorithms, including sorting stacks and sortable permutations. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.
This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.
Motivated by some notorious open problems, such as the Jacobian conjecture and the tame generators problem, the subject of polynomial automorphisms has become a rapidly growing field of interest. This book, the first in the field, collects many of the results scattered throughout the literature. It introduces the reader to a fascinating subject and brings him to the forefront of research in this area. Some of the topics treated are invertibility criteria, face polynomials, the tame generators problem, the cancellation problem, exotic spaces, DNA for polynomial automorphisms, the Abhyankar-Moh theorem, stabilization methods, dynamical systems, the Markus-Yamabe conjecture, group actions, Hilbert's 14th problem, various linearization problems and the Jacobian conjecture. The work is essentially self-contained and aimed at the level of beginning graduate students. Exercises are included at the end of each section. At the end of the book there are appendices to cover used material from algebra, algebraic geometry, D-modules and GrAbner basis theory. A long list of ''strong'' examples and an extensive bibliography conclude the book.
Bibliograpby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 Critical point dominance in quantum field models . . . . . . . . . . . . . . . . . . . . 326 lp, ' quantum fieId model in the single-phase regioni: Differentiability of the mass and bounds on critical exponents . . . . 341 Remark on the existence of lp: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 On the approach to the critical point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 Critical exponents and elementary partic1es . . . . . . . . . . . . . . . . . . . . . . . . . . 362 V Particle Structure Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 The entropy principle for vertex funetions in quantum fieId models . . . . . 372 Three-partic1e structure of lp' interactions and the sealing limit . . . . . . . . . 397 Two and three body equations in quantum field models . . . . . . . . . . . . . . . 409 Partic1es and scaling for lattice fields and Ising models . . . . . . . . . . . . . . . . 437 The resununation of one particIe lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 VI Bounds on Coupling Constants Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Absolute bounds on vertices and couplings . . . . . . . . . . . . . . . . . . . . . . . . . . 480 The coupling constant in a lp' field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 VII Confinement and Instantons Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Instantons in a U(I) lattice gauge theory: A coulomb dipole gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 Charges, vortiees and confinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 vi VIII ReOectioD Positivity Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 A note on reflection positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 vii Collected Papers - Volume 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 I Infinite Renormalization of the Hamiltonian Is Necessary 9 II Quantum Field Theory Models: Parti. The ep;" Model 13 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Fock space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Q space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 The Hamiltonian H(g). . . . . . . . . . . . . . . . . . . . . . |
![]() ![]() You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,110
Discovery Miles 11 100
|