![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This textbook helps graduate level student to understand easily the linearization of nonlinear control system. Differential geometry is essential to understand the linearization problems of the control nonlinear systems. In this book, the basics of differential geometry needed in linearization are explained on the Euclidean space instead of the manifold for students who are not accustomed to differential geometry. Many Lie algebra formulas, used often in linearization, are also provided with proof. The conditions in the linearization problems are complicated to check because the Lie bracket calculation of vector fields by hand needs much concentration and time. This book provides MATLAB programs for most of the theorems. The book also includes end-of-chapter problems and other pedagogical aids to help understanding and self study.
The Angel author team meets the needs of today's learners by pairing concise explanations with the new Understanding Algebra feature and an updated approach to examples. Discussions throughout the text have been thoroughly revised for brevity and accessibility. Whenever possible, a visual example or diagram is used to explain concepts and procedures. Understanding Algebra call-outs highlight key points throughout the text, allowing students to identify important points at a glance. The updated examples use color to highlight the variables and important notation to clearly illustrate the solution process.
This book presents generalized Caputo fractional Ostrowski and Gruss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Gruss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann-Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book's results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This sixth volume collects authoritative chapters covering several applications of fractional calculus in control theory, including fractional controllers, design methods and toolboxes, and a large number of engineering applications of control.
Is there anything more beautiful than an "A" in Algebra? Not to the Lial team! Marge Lial, John Hornsby, and Terry McGinnis write their textbooks and accompanying resources with one goal in mind: giving students and teachers all the tools they need to achieve success. With this revision, the Lial team has further refined the presentation and exercises throughout the text. They offer several exciting new resources for students and teachers that will provide extra help when needed, regardless of the learning environment (classroom, lab, hybrid, online, etc)-new study skills activities in the text, an expanded video program available in MyMathLab and on the Video Resources on DVD, and more!
The Tobey/Slater/Blair/Crawford series builds essential skills one at a time by breaking the mathematics down into manageable pieces. This practical "building block" organization makes it easy for students to understand each topic and gain confidence as they move through each section. Students will find many opportunities to check and reinforce their understanding of concepts throughout the text and its MyMathLab course. With this revision, the author team has added a new Math Coach feature that provides students with an office hour experience by helping them to avoid commonly made mistakes. With Tobey/Slater/Blair/Crawford, students have a tutor, a study companion, and now a coach, with them every step of the way.
An understanding of emergent computation requires a profound revision of the most fundamental ideas. A noticeable attempt of such a rethinking is a world view in which natural systems are seen not as separate entities but as integrated parts of a unified whole. The book for the first time presents such a mathematical structure, which remarkably is based on integers as the single concept. As integers are considered to be the most fundamental entities irreducible to something simpler, this makes the mathematical structure a final theory, and thus we do not have to look for its explanation in terms of deeper concepts. The book is not only applicable to models of computation and optimization but also has scientific consequences, as it contributes to a rethinking of the most fundamental ideas about nature. Audience: The book is written at a level suitable for advanced undergraduate students and graduate students as well as research workers and practitioners in computer science information technology, mathematics and physics. The book is suitable as a reference or as supplementary reading material for an advanced graduate course. Only a basic knowledge of calculus is required.
Even three decades ago, the words 'combinatorial algebra' contrasting, for in stance, the words 'combinatorial topology,' were not a common designation for some branch of mathematics. The collocation 'combinatorial group theory' seems to ap pear first as the title of the book by A. Karras, W. Magnus, and D. Solitar [182] and, later on, it served as the title of the book by R. C. Lyndon and P. Schupp [247]. Nowadays, specialists do not question the existence of 'combinatorial algebra' as a special algebraic activity. The activity is distinguished not only by its objects of research (that are effectively given to some extent) but also by its methods (ef fective to some extent). To be more exact, we could approximately define the term 'combinatorial algebra' for the purposes of this book, as follows: So we call a part of algebra dealing with groups, semi groups , associative algebras, Lie algebras, and other algebraic systems which are given by generators and defining relations {in the first and particular place, free groups, semigroups, algebras, etc. )j a part in which we study universal constructions, viz. free products, lINN-extensions, etc. j and, finally, a part where specific methods such as the Composition Method (in other words, the Diamond Lemma, see [49]) are applied. Surely, the above explanation is far from covering the full scope of the term (compare the prefaces to the books mentioned above).
For a sophomore-level course in Linear Algebra. Based on the recommendations of the Linear Algebra Curriculum Study Group, this introduction to linear algebra offers a matrix-oriented approach with more emphasis on problem solving and applications. Throughout the text, use of technology is encouraged. The focus is on matrix arithmetic, systems of linear equations, properties of Euclidean n-space, eigenvalues and eigenvectors, and orthogonality. Although matrix-oriented, the text provides a solid coverage of vector spaces
For combined differential equations and linear algebra courses teaching students who have successfully completed three semesters of calculus. This complete introduction to both differential equations and linear algebra presents a carefully balanced and sound integration of the two topics. It promotes in-depth understanding rather than rote memorization, enabling students to fully comprehend abstract concepts and leave the course with a solid foundation in linear algebra. Flexible in format, it explains concepts clearly and logically with an abundance of examples and illustrations, without sacrificing level or rigor. A vast array of problems supports the material, with varying levels from which students/instructors can choose.
Dugopolski's College Algebra and Trigonometry: A Unit Circle Approach, Fifth Edition gives students the essential strategies to help them develop the comprehension and confidence they need to be successful in this course. Students will find enough carefully placed learning aids and review tools to help them do the math without getting distracted from their objectives. Regardless of their goals beyond the course, all students will benefit from Dugopolski's emphasis on problem solving and critical thinking, which is enhanced by the addition of nearly 1,000 exercises in this edition. Instructors will also find this book a pleasure to use, with the support of an Annotated Instructor's Edition which maps each group of exercises back to each example within the section; pop quizzes for every section; and answers on the page for most exercises plus a complete answer section at the back of the text. An Insider's Guide provides further strategies for successful teaching with Dugopolski.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fifth volume collects authoritative chapters covering several applications of fractional calculus in physics, including electrodynamics, statistical physics and physical kinetics, and quantum theory.
In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Groebner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugere (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.
The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. These workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. At the beginning, the top universities in California and Utah hosted the meetings which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. The contributors to this volume have all participated in these Lie theory workshops and include in this volume expository articles which cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned-above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.
Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.
Thisvolumeisacollectionof13peerreviewedpapersconsistingofexpository/s- vey articles and research papers by 24 authors. Many of these papers were presented at the International Conference on Ring and Module Theory held at Hacettepe University in Ankara, Turkey, during August 18-22, 2008. The selected papers and articles examine wide ranging and cutting edge - velopments in various areas of Algebra including Ring Theory, Module Theory, Hopf Algebras, and Commutative Algebra. The survey articles are by well-known experts in their respective areas and provide an overview which is useful for - searchers in the area, as well as, for researchers looking for new or related ?elds to investigate. The research papers give a taste of current research. We feel the variety of topics will be of interest to both graduate students and researchers. We wish to thank the large number of conference participants from over 20 countries, the contributors to this volume, and the referees. Encouragement and supportfromHacettepe University,The Scienti?c and TechnologicalResearch .. ? Council of Turkey (TUBITAK) and Republic of Turkey Ministry of Culture and Tourism are greatly appreciated. We also appreciate Evrim Akalan, Sevil Bar?n, .. Canan Celep Yucel, .. Esra Demiryur .. ek, Ozlem Erdo? gan, Fatih Karabacak, Didem Kavalc?,MinePolat,Tu? g, ceSivrikaya,Ay, seS.. onmez,FigenTak?l,MuharremYavuz, Filiz Y?ld?z and Ugu ? r Yucel .. for their assistance and e?cient arrangement of the facilities which greatly contributed to the success of the conference. Finally, we must thank Erkan Afacan of Gazi University for his excellent job of typing and uniformizing manuscripts.
Over the course of his distinguished career, Nicolai Reshetikhin has made a number of groundbreaking contributions in several fields, including representation theory, integrable systems, and topology. The chapters in this volume - compiled on the occasion of his 60th birthday - are written by distinguished mathematicians and physicists and pay tribute to his many significant and lasting achievements. Covering the latest developments at the interface of noncommutative algebra, differential and algebraic geometry, and perspectives arising from physics, this volume explores topics such as the development of new and powerful knot invariants, new perspectives on enumerative geometry and string theory, and the introduction of cluster algebra and categorification techniques into a broad range of areas. Chapters will also cover novel applications of representation theory to random matrix theory, exactly solvable models in statistical mechanics, and integrable hierarchies. The recent progress in the mathematical and physicals aspects of deformation quantization and tensor categories is also addressed. Representation Theory, Mathematical Physics, and Integrable Systems will be of interest to a wide audience of mathematicians interested in these areas and the connections between them, ranging from graduate students to junior, mid-career, and senior researchers.
Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists, engineers and researchers in pure and applied mathematical sciences, operations research, engineering, and cyber security will find the interdisciplinary scientific perspectives useful to their overall understanding and further research.
These Proceedings comprise the bulk of the papers presented at the Inter national Conference on Semigroups of Opemtors: Theory and Contro held 14-18 December 1998, Newport Beach, California, U.S.A. The intent of the Conference was to highlight recent advances in the the ory of Semigroups of Operators which provides the abstract framework for the time-domain solutions of time-invariant boundary-value/initial-value problems of partial differential equations. There is of course a firewall between the ab stract theory and the applications and one of the Conference aims was to bring together both in the hope that it may be of value to both communities. In these days when all scientific activity is judged by its value on "dot com" it is not surprising that mathematical analysis that holds no promise of an immediate commercial product-line, or even a software tool-box, is not high in research priority. We are particularly pleased therefore that the National Science Foundation provided generous financial support without which this Conference would have been impossible to organize. Our special thanks to Dr. Kishan Baheti, Program Manager."
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
Parallel Scientific Computing and Optimization introduces new developments in the construction, analysis, and implementation of parallel computing algorithms. This book presents 23 self-contained chapters, including survey chapters and surveys, written by distinguished researchers in the field of parallel computing. Each chapter is devoted to some aspects of the subject: parallel algorithms for matrix computations, parallel optimization, management of parallel programming models and data, with the largest focus on parallel scientific computing in industrial applications. This volume is intended for scientists and graduate students specializing in computer science and applied mathematics who are engaged in parallel scientific computing.
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics.
* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Since its initiation in 1962, this series has presented authoritative reviews of the most important developments in nuclear science and engineering, from both theoretical and applied perspectives. In addition, many original contributions are included. |
You may like...
Factorization of Boundary Value Problems…
Jacques Henry, A M Ramos
Hardcover
Elementary Treatise on Mechanics - for…
William G (William Guy) 1820- Peck
Hardcover
R887
Discovery Miles 8 870
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
|