![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This book developed from a course given by the author to undergraduate and postgraduate students. It takes up Matrix Theory, Antenna Theory, and Probability Theory in detail. The first chapter on matrix theory discusses in reasonable depth the theory of Lie Algebras leading upto Cartan's Classification Theory. It also discusses some basic elements of Functional Analysis and Operator Theory in infinite dimensional Banach and Hilbert spaces. The second chapter discusses Basic Probability Theory and the topics discussed find applications to Stochastic Filtering Theory for differential equations driven by white Gaussian noise. The third chapter is on Antenna Theory with a focus on Modern Quantum Antenna Theory. The book will be a valuable resource to students and early career researchers in the field of Mathametical Physics.
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampere equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton-Jacobi-Bellman equations Improving policies for Hamilton-Jacobi-Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton-Jacobi-Bellman equations based on diagonally implicit symplectic Runge-Kutta methods Numerical solution of the simple Monge-Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton-Jacobi-Bellman equation within the European Union Emission Trading Scheme
This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classifica tion of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics-e.g. complex structures, Caylay numbers and symplectic spaces - have been added. I should like to thank Mr. M. L. Johnson who made many useful suggestions for the problems in the third edition. I am also grateful to my colleague S. Halperin who assisted in the revision of Chapters XII and XIII and to Mr. F. Gomez who helped to prepare the subject index. Finally, I have to express my deep gratitude to my colleague J. R. Van stone who worked closely with me in the preparation of all the revisions and additions and who generously helped with the proof reading."
This monograph aspires to lay the foundations of a new scientific discipline, demoeconomics, representing the synthesis of demography and spatial economics. This synthesis is performed in terms of interaction between population and its economic activity. The monograph appears a unique research work having no analogs in scientific literature. Demoeconomic systems are studied involving the macrosystems approach which combines the generalized entropy maximization principle and the local equilibria principle. Demoeconomic systems operate in an uncertain environment; thus and so, the monograph develops the methodology and technique of probabilistic modeling and forecasting of their evolution.
This book gives a comprehensive treatment of the Grassmannian varieties and their Schubert subvarieties, focusing on the geometric and representation-theoretic aspects of Grassmannian varieties. Research of Grassmannian varieties is centered at the crossroads of commutative algebra, algebraic geometry, representation theory, and combinatorics. Therefore, this text uniquely presents an exciting playing field for graduate students and researchers in mathematics, physics, and computer science, to expand their knowledge in the field of algebraic geometry. The standard monomial theory (SMT) for the Grassmannian varieties and their Schubert subvarieties are introduced and the text presents some important applications of SMT including the Cohen-Macaulay property, normality, unique factoriality, Gorenstein property, singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. This text would serve well as a reference book for a graduate work on Grassmannian varieties and would be an excellent supplementary text for several courses including those in geometry of spherical varieties, Schubert varieties, advanced topics in geometric and differential topology, representation theory of compact and reductive groups, Lie theory, toric varieties, geometric representation theory, and singularity theory. The reader should have some familiarity with commutative algebra and algebraic geometry.
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains carefully various data analysis procedures and techniques in a clear, concise, and straightforward language and is written in a self-contained way that is accessible to researchers and advanced students in science and engineering. This is an excellent reference for scientists and engineers who wish to analyze, interpret and model data from various sources, and is also an ideal graduate-level textbook for courses in environmental sciences and related fields. Contents: Preface Time series analysis Chaos and dynamical systems Approximation Interpolation Statistical methods Numerical methods Optimization Data envelopment analysis Risk assessments Life cycle assessments Index
Leibniz Algebras: Structure and Classification is designed to introduce the reader to the theory of Leibniz algebras. Leibniz algebra is the generalization of Lie algebras. These algebras preserve a unique property of Lie algebras that the right multiplication operators are derivations. They first appeared in papers of A.M Blokh in the 1960s, under the name D-algebras, emphasizing their close relationship with derivations. The theory of D-algebras did not get as thorough an examination as it deserved immediately after its introduction. Later, the same algebras were introduced in 1993 by Jean-Louis Loday , who called them Leibniz algebras due to the identity they satisfy. The main motivation for the introduction of Leibniz algebras was to study the periodicity phenomena in algebraic K-theory. Nowadays, the theory of Leibniz algebras is one of the more actively developing areas of modern algebra. Along with (co)homological, structural and classification results on Leibniz algebras, some papers with various applications of the Leibniz algebras also appear now. However, the focus of this book is mainly on the classification problems of Leibniz algebras. Particularly, the authors propose a method of classification of a subclass of Leibniz algebras based on algebraic invariants. The method is applicable in the Lie algebras case as well. Features: Provides a systematic exposition of the theory of Leibniz algebras and recent results on Leibniz algebras Suitable for final year bachelor's students, master's students and PhD students going into research in the structural theory of finite-dimensional algebras, particularly, Lie and Leibniz algebras Covers important and more general parts of the structural theory of Leibniz algebras that are not addressed in other texts
This book contains twenty-one essays by leading authorities on aspects of contemporary logic, ranging from foundations of set theory to applications of logic in computing and in the theory of fields. In those parts of logic closest to computer science, the gap between foundations and applications is often small, as illustrated by three essays on the proof theory of non-classical logics. There are also chapters on the lambda calculus, on relating logic programs to inductive definitions, on Buechi and Presburger arithmetics, and on definability in Lindenbaum algebras. Aspects of constructive mathematics discussed are embeddings of Heyting algebras and proofs in mathematical anslysis. Set theory is well covered with six chapters discussing Cohen forcing, Baire category, determinancy, Nash-Williams theory, critical points (and the remarkable connection between them and properties of left distributive operations) and independent structures. The longest chapter in the book is a survey of 0-minimal structures, by Lou van den Dries; during the last ten years these structures have come to take a central place in applications of model theory to fields and function theory, and this chapter is the first broad survey of the area. Other chapters illustrate how to apply model theory to field theory, complex geometry and groups, and how to recover from its automorphism group. Finally, one chapter applies to the theory of toric varieties to solve problems about many-valued logics.
Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
A unique, applied approach to problem solving in linear algebra
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
Working out solutions to polynomial equations is a mathematical problem that dates from antiquity. Galois developed a theory in which the obstacle to solving a polynomial equation is an associated collection of symmetries. Obtaining a root requires "breaking" that symmetry. When the degree of an equation is at least five, Galois Theory established that there is no formula for the solutions like those found in lower degree cases. However, this negative result doesn't mean that the practice of equation-solving ends. In a recent breakthrough, Doyle and McMullen devised a solution to the fifth-degree equation that uses geometry, algebra, and dynamics to exploit icosahedral symmetry. Polynomials, Dynamics, and Choice: The Price We Pay for Symmetry is organized in two parts, the first of which develops an account of polynomial symmetry that relies on considerations of algebra and geometry. The second explores beyond polynomials to spaces consisting of choices ranging from mundane decisions to evolutionary algorithms that search for optimal outcomes. The two algorithms in Part I provide frameworks that capture structural issues that can arise in deliberative settings. While decision-making has been approached in mathematical terms, the novelty here is in the use of equation-solving algorithms to illuminate such problems. Features Treats the topic-familiar to many-of solving polynomial equations in a way that's dramatically different from what they saw in school Accessible to a general audience with limited mathematical background Abundant diagrams and graphics.
This book consists of a collection of original, refereed research and expository articles on elliptic aspects of geometric analysis on manifolds, including singular, foliated and non-commutative spaces. The topics covered include the index of operators, torsion invariants, K-theory of operator algebras and L2-invariants. There are contributions from leading specialists, and the book maintains a reasonable balance between research, expository and mixed papers.
The authors develop a theory of $THH$ and $TC$ of Waldhausen categories and prove the analogues of Waldhausen's theorems for $K$-theory. They resolve the longstanding confusion about localization sequences in $THH$ and $TC$, and establish a specialized devissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding $THH(ku)$, and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on $A(*)$.
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.
The key feature at this conference was the 33 invited papers from the world's leading number theorists. Talks were in three sessions: analytical number theory; arithmetical algebraic geometry; and diophantive approximation. Speakers included: F.Beukers (University of Utrecht); R. Heath-Brown (Oxford); H.L. Montgomery (Ann Arbor, Michigan); T. Nakahara (Saga University, Japan); Y. Zarhin (Academy of Science, USSR).
Understanding maths has never been easier. Combining bold, elegant graphics with easy-to-understand text, Simply Maths is the perfect introduction to the subject for those who are short of time but hungry for knowledge. Covering more than 90 key mathematical concepts from prime numbers and fractions to quadratic equations and probability experiments, each pared-back, single-page entry explains the concept more clearly than ever before. Organized by major themes - number theory and systems; calculations; geometry; algebra; graphs; ratio and proportion; measurement; probability and statistics; and calculus - entries explain the essentials of each key mathematical theory with simple clarity and for ease of understanding. Whether you are studying maths at school or college, or simply want a jargon-free overview of the subject, this indispensable guide is packed with everything you need to understand the basics quickly and easily.
This EMS volume consists of two parts, written by leading scientists in the field of operator algebras and non-commutative geometry. The first part, written by M.Rordam, is on Elliott's classification program for nuclear C*-algebras. The emphasis is on the work of Kirchberg and the spectacular results by Kirchberg and Phillips giving a nearly complete classification, in terms of K-theoretic invariants, in the purely infinite case. This part of the program is described with almost full proofs beginning with Kirchberg's tensor product theorems and Kirchberg's embedding theorem for exact C*-algebras. The classification of finite simple C*-algebras starting with AF-algebras, and continuing with AT- and AH-algebras is covered, but mostly without proofs. The second part, written by E.Stormer, is a survey of the theory of of noncommutative entropy of automorphisms of C*-algebras and von Neumann algebras from its initiation by Connes and Stormer in 1975 till 2001.
Capturing the state of the art of the interplay between positivity, noncommutative analysis, and related areas including partial differential equations, harmonic analysis, and operator theory, this volume was initiated on the occasion of the Delft conference in honour of Ben de Pagter's 65th birthday. It will be of interest to researchers in positivity, noncommutative analysis, and related fields. Contributions by Shavkat Ayupov, Amine Ben Amor, Karim Boulabiar, Qingying Bu, Gerard Buskes, Martijn Caspers, Jurie Conradie, Garth Dales, Marcel de Jeu, Peter Dodds, Theresa Dodds, Julio Flores, Jochen Gluck, Jacobus Grobler, Wolter Groenevelt, Markus Haase, Klaas Pieter Hart, Francisco Hernandez, Jamel Jaber, Rien Kaashoek, Turabay Kalandarov, Anke Kalauch, Arkady Kitover, Erik Koelink, Karimbergen Kudaybergenov, Louis Labuschagne, Yongjin Li, Nick Lindemulder, Emiel Lorist, Qi Lu, Miek Messerschmidt, Susumu Okada, Mehmet Orhon, Denis Potapov, Werner Ricker, Stephan Roberts, Pablo Roman, Anton Schep, Claud Steyn, Fedor Sukochev, James Sweeney, Guido Sweers, Pedro Tradacete, Jan Harm van der Walt, Onno van Gaans, Jan van Neerven, Arnoud van Rooij, Freek van Schagen, Dominic Vella, Mark Veraar, Anthony Wickstead, Marten Wortel, Ivan Yaroslavtsev, and Dmitriy Zanin.
This is the second of three volumes that, together, give an exposition of the mathematics of grades 9-12 that is simultaneously mathematically correct and grade-level appropriate. The volumes are consistent with CCSSM (Common Core State Standards for Mathematics) and aim at presenting the mathematics of K-12 as a totally transparent subject. The first part of this volume is devoted to the study of standard algebra topics: quadratic functions, graphs of equations of degree 2 in two variables, polynomials, exponentials and logarithms, complex numbers and the fundamental theorem of algebra, and the binomial theorem. Having translations and the concept of similarity at our disposal enables us to clarify the study of quadratic functions by concentrating on their graphs, the same way the study of linear functions is greatly clarified by knowing that their graphs are lines. We also introduce the concept of formal algebra in the study of polynomials with complex coefficients. The last three chapters in this volume complete the systematic exposition of high school geometry that is consistent with CCSSM. These chapters treat the geometry of the triangle and the circle, ruler and compass constructions, and a general discussion of axiomatic systems, including non-Euclidean geometry and the celebrated work of Hilbert on the foundations. This book should be useful for current and future teachers of K-12 mathematics, as well as for some high school students and for education professionals.
Topos theory provides an important setting and language for much of mathematical logic and set theory. It is well known that a typed language can be given for a topos to be regarded as a category of sets. This enables a fruitful interplay between category theory and set theory. However, one stumbling block to a logical approach to topos theory has been the treatment of geometric morphisms. This book presents a convenient and natural solution to this problem by developing the notion of a frame relative to an elementary topos. The authors show how this technique enables a logical approach to be taken to topics such as category theory relative to a topos and the relative Giraud theorem. The work is self-contained except that the authors presuppose a familiarity with basic category theory and topos theory. Logicians, set and category theorists, and computer scientist working in the field will find this work essential reading. |
You may like...
The Lesser Key of Solomon
Aleister Crowley, S. L. MacGregor Mathers
Hardcover
R500
Discovery Miles 5 000
Wrestling with Archons - Gnosticism as a…
Jonathan Cahana-Blum
Hardcover
R2,515
Discovery Miles 25 150
|