![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
The goal of Computer Algebra: Concepts and Techniques is to demystify computer algebra systems for a wide audience including students, faculty, and professionals in scientific fields such as computer science, mathematics, engineering, and physics. Unlike previous books, the only prerequisites are knowledge of first year calculus and a little programming experience - a background that can be assumed of the intended audience. The book is written in a lean and lively style, with numerous examples to illustrate the issues and techniques discussed. It presents the principal algorithms and data structures, while also discussing the inherent and practical limitations of these systems
New Edition: A Course on Abstract Algebra (2nd Edition)This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' lecture notes at the Department of Mathematics, National Chung Cheng University of Taiwan, it begins with a description of the algebraic structures of the ring and field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's Theorem and Sylow's Theorems follow as applications of group theory. Ring theory forms the second part of abstract algebra, with the ring of polynomials and the matrix ring as basic examples. The general theory of ideals as well as maximal ideals in the rings of polynomials over the rational numbers are also discussed. The final part of the book focuses on field theory, field extensions and then Galois theory to illustrate the correspondence between the Galois groups and field extensions.This textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
This monograph presents recent developments of the theory of algebraic dynamical systems and their applications to computer sciences, cryptography, cognitive sciences, psychology, image analysis, and numerical simulations. The most important mathematical results presented in this book are in the fields of ergodicity, p-adic numbers, and noncommutative groups. For students and researchers working on the theory of dynamical systems, algebra, number theory, measure theory, computer sciences, cryptography, and image analysis.
Praise for the first edition "This book is clearly written and presents a large number of
examples illustrating the theory . . . there is no other book of
comparable content available. Because of its detailed coverage of
applications generally neglected in the literature, it is a
desirable if not essential addition to undergraduate mathematics
and computer science libraries." As a cornerstone of mathematical science, the importance of modern algebra and discrete structures to many areas of science and technology is apparent and growing-with extensive use in computing science, physics, chemistry, and data communications as well as in areas of mathematics such as combinatorics. Blending the theoretical with the practical in the instruction of modern algebra, Modern Algebra with Applications, Second Edition provides interesting and important applications of this subject-effectively holding your interest and creating a more seamless method of instruction. Incorporating the applications of modern algebra throughout its authoritative treatment of the subject, this book covers the full complement of group, ring, and field theory typically contained in a standard modern algebra course. Numerous examples are included in each chapter, and answers to odd-numbered exercises are appended in the back of the text. Chapter topics include:
In addition to improvements in exposition, this fully updated Second Edition also contains new material on order of an element and cyclic groups, more details about the lattice of divisors of an integer, and new historical notes. Filled with in-depth insights and over 600 exercises of varying difficulty, Modern Algebra with Applications, Second Edition can help anyone appreciate and understand this subject.
Advances in Queueing Theory and Network Applications presents several useful mathematical analyses in queueing theory and mathematical models of key technologies in wired and wireless communication networks such as channel access controls, Internet applications, topology construction, energy saving schemes, and transmission scheduling. In sixteen high quality chapters, this work provides novel ideas, new analytical models, and simulation and experimental results by experts in the field of queueing theory and network applications. The text serves as a state-of-the-art reference for a wide range of researchers and engineers engaged in the fields of queueing theory and network applications, and can also serve as supplemental material for advanced courses in operations research, queueing theory, performance analysis, traffic theory, as well as theoretical design and management of communication networks.
The Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Sir William Rowan Hamilton was a genius, and will be remembered for his significant contributions to physics and mathematics. The Hamiltonian, which is used in quantum physics to describe the total energy of a system, would have been a major achievement for anyone, but Hamilton also invented quaternions, which paved the way for modern vector analysis. Quaternions are one of the most documented inventions in the history of mathematics, and this book is about their invention, and how they are used to rotate vectors about an arbitrary axis. Apart from introducing the reader to the features of quaternions and their associated algebra, the book provides valuable historical facts that bring the subject alive. Quaternions for Computer Graphics introduces the reader to quaternion algebra by describing concepts of sets, groups, fields and rings. It also includes chapters on imaginary quantities, complex numbers and the complex plane, which are essential to understanding quaternions. The book contains many illustrations and worked examples, which make it essential reading for students, academics, researchers and professional practitioners.
Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation includes more than 500 landmark and up-to-date references providing direction for further research.
This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.
Written by an algebraic topologist motivated by his own desire to learn, this well-written book represents the compilation of the most essential and interesting results and methods in the theory of polynomial invariants of finite groups. From the table of contents: - Invariants and Relative Invariants - Finite Generation of Invariants - Construction of Invariants - Poincare Series - Dimension Theoretic Properties of Rings of Invariants - Homological Properties of Invariants - Groups Generated by Reflections - Modular Invariants - Polynomial Tensor Exterior Algebras - Invariant Theory and Algebraic Topology - The Steenrod Algebra and Modular Invariant Theory
This book is a compilation of the most important and widely applicable methods for evaluating and approximating integrals. It is an indispensable time saver for engineers and scientists needing to evaluate integrals in their work. From the table of contents: - Applications of Integration - Concepts and Definitions - Exact Analytical Methods - Approximate Analytical Methods - Numerical Methods: Concepts - Numerical Methods: Techniques
This textbook is designed for students with at least one solid semester of abstract algebra,some linear algebra background, and no previous knowledge of module theory. Modulesand the Structure of Rings details the use of modules over a ring as a means of consideringthe structure of the ring itself--explaining the mathematics and "inductivereasoning" used in working on ring theory challenges and emphasizing modules insteadof rings.Stressing the inductive aspect of mathematical research underlying the formal deductivestyle of the literature, this volume offers vital background on current methods for solvinghard classification problems of algebraic structures. Written in an informal butcompletely rigorous style, Modules and the Structure of Rings clarifies sophisticatedproofs ... avoids the formalism of category theory ... aids independent study or seminarwork ... and supplies end-of-chapter problems.This book serves as an excellent primary.text for upper-level undergraduate and graduatestudents in one-semester courses on ring or module theory-laying a foundation formore advanced study of homological algebra or module theory.
A comprehensive study of the main research done in polynomial identities over the last 25 years, including Kemer's solution to the Specht problem in characteristic O and examples in the characteristic p situation. The authors also cover codimension theory, starting with Regev's theorem and continuing through the Giambruno-Zaicev exponential rank. The "best" proofs of classical results, such as the existence of central polynomials, the tensor product theorem, the nilpotence of the radical of an affine PI-algebra, Shirshov's theorem, and characterization of group algebras with PI, are presented.
Written by researchers who have helped found and shape the field, this book is a definitive introduction to geometric modeling. The authors present all of the necessary techniques for curve and surface representations in computer-aided modeling with a focus on how the techniques are used in design. They achieve a balance between mathematical rigor and broad applicability. Appropriate for readers with a moderate degree of mathematical maturity, this book is suitable as an undergraduate or graduate text, or particularly as a resource for self-study.
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
Qualitative Estimates For Partial Differential Equations: An Introduction describes an approach to the use of partial differential equations (PDEs) arising in the modelling of physical phenomena. It treats a wide range of differential inequality techniques applicable to problems arising in engineering and the natural sciences, including fluid and solid mechanics, physics, dynamics, biology, and chemistry. The book begins with an elementary discussion of the fundamental principles of differential inequality techniques for PDEs arising in the solution of physical problems, and then shows how these are used in research. Qualitative Estimates For Partial Differential Equations: An Introduction is an ideal book for students, professors, lecturers, and researchers who need a comprehensive introduction to qualitative methods for PDEs arising in engineering and the natural sciences.
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.
Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0. The book first discusses the theory needed for Kemer's proof, including the featured role of Grassmann algebra and the translation to superalgebras. The authors develop Kemer polynomials for arbitrary varieties as tools for proving diverse theorems. They also lay the groundwork for analogous theorems that have recently been proved for Lie algebras and alternative algebras. They then describe counterexamples to Specht's conjecture in characteristic p as well as the underlying theory. The book also covers Noetherian PI-algebras, Poincare-Hilbert series, Gelfand-Kirillov dimension, the combinatoric theory of affine PI-algebras, and homogeneous identities in terms of the representation theory of the general linear group GL. Through the theory of Kemer polynomials, this edition shows that the techniques of finite dimensional algebras are available for all affine PI-algebras. It also emphasizes the Grassmann algebra as a recurring theme, including in Rosset's proof of the Amitsur-Levitzki theorem, a simple example of a finitely based T-ideal, the link between algebras and superalgebras, and a test algebra for counterexamples in characteristic p.
This volume contains the proceedings of the conference A Panorama on Singular Varieties, celebrating the 70th birthday of Le Dung Trang, held from February 7-10, 2017, at the University of Seville, IMUS, Seville, Spain. The articles cover a wide range of topics in the study of singularities and should be of great value to graduate students and research faculty who have a basic background in the theory of singularities. This book is published in cooperation with Real Sociedad Matematica Espanola.
Near Rings, Fuzzy Ideals, and Graph Theory explores the relationship between near rings and fuzzy sets and between near rings and graph theory. It covers topics from recent literature along with several characterizations. After introducing all of the necessary fundamentals of algebraic systems, the book presents the essentials of near rings theory, relevant examples, notations, and simple theorems. It then describes the prime ideal concept in near rings, takes a rigorous approach to the dimension theory of N-groups, gives some detailed proofs of matrix near rings, and discusses the gamma near ring, which is a generalization of both gamma rings and near rings. The authors also provide an introduction to fuzzy algebraic systems, particularly the fuzzy ideals of near rings and gamma near rings. The final chapter explains important concepts in graph theory, including directed hypercubes, dimension, prime graphs, and graphs with respect to ideals in near rings. Near ring theory has many applications in areas as diverse as digital computing, sequential mechanics, automata theory, graph theory, and combinatorics. Suitable for researchers and graduate students, this book provides readers with an understanding of near ring theory and its connection to fuzzy ideals and graph theory.
This volume contains the proceedings of the Arizona Winter School 2016, which was held from March 12-16, 2016, at The University of Arizona, Tucson, AZ. In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with $\mathrm{SL}_2(\mathbb{F}_q)$ and some of its subgroups as the key examples. The article by Etienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from $\ell$-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic $L$-functions, and Mumford-Tate groups.
This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.
The present volume has its source in the CAP-CRM summer school on "Particles and Fields" that was held in Banff in the summer of 1994. Over the years, the Division of Theoretical Physics of the Canadian Associa- tion of Physicists (CAP) has regularly sponsored such schools on various theoretical and experimental topics. In 1994, the Centre de Recherches Mathematiques (CRM) lent its support to the event. This institute, located in Montreal, is one of Canada's national research centers in the mathe- matical sciences. Its mandate includes the organization of scientific events across Canada and since 1994 the CRM has been holding a yearly summer school in Banff as part of its thematic program. The summer school, whose lectures are collected here, has thus become a tradition. The focus of the school was integrable theories, matrix models, statistical systems, field theory and its applications to condensed matter physics, as well as certain aspects of algebra, geometry, and topology. This covers some of the most significant advances in modern theoretical physics. The present volume updates and expands these lectures and reflects the high pedagogical level of the school. The first chapter by E. Corrigan describes some of the remarkable fea- tures of the integrable Toda field theories which are associated with affine Dynkin diagrams. The second chapter by J. Feldman, H. Knorrer, D. Leh- mann, and E.
Noncommutative Geometry and Cayley-smooth Orders explains the theory of Cayley-smooth orders in central simple algebras over function fields of varieties. In particular, the book describes the etale local structure of such orders as well as their central singularities and finite dimensional representations. After an introduction to partial desingularizations of commutative singularities from noncommutative algebras, the book presents the invariant theoretic description of orders and their centers. It proceeds to introduce etale topology and its use in noncommutative algebra as well as to collect the necessary material on representations of quivers. The subsequent chapters explain the etale local structure of a Cayley-smooth order in a semisimple representation, classify the associated central singularity to smooth equivalence, describe the nullcone of these marked quiver representations, and relate them to the study of all isomorphism classes of n-dimensional representations of a Cayley-smooth order. The final chapters study Quillen-smooth algebras via their finite dimensional representations. Noncommutative Geometry and Cayley-smooth Orders provides a gentle introduction to one of mathematics' and physics' hottest topics. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
R2,492
Discovery Miles 24 920
|