![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This book provides an elementary, complete account of quasi-Frobenius rings at a level allowing researchers and graduate students to gain entry to the field. A ring is called quasi-Frobenius if it is "right" or "left" selfinjective, and "right" or "left" artinian (all four combinations are equivalent). The study of these rings grew out of the theory of representations of a finite group as a group of matrices over a field, and the present extent of the theory is wide-ranging.
The application of fractals and fractal geometry in soil science has become increasingly important over the last few years. This self-contained and timely book was designed to provide detailed and comprehensive information on the current status of the application of fractal geometry in soil science, and on prospects for its future use. With a detailed and specific introductory chapter, particular attention is paid to comparing and contrasting "fractal" and "fragmentation" concepts. Some uses of fractals, such as to quantify the retention and transport properties of soils, to describe the intricate geometry of pore surfaces and macropore networks, or to elucidate the rooting patterns of various plants, are discussed. Applications of fractals in soil science are both relatively recent and in constant evolution. This book reflects accurately existing trends, by allowing sharp differences among the viewpoints expressed in contributed chapters to be presented to the reader in one self-contained volume.
Includes current work of 38 renowned contributors that details the diversity of thought in the fields of commutative algebra and multiplicative ideal theory. Summarizes recent findings on classes of going-down domains and the going-down property, emphasizing new characterizations and applications, as well as generalizations for commutative rings with zero divisors.
Features a stimulating selection of papers on abelian groups, commutative and noncommutative rings and their modules, and topological groups. Investigates currently popular topics such as Butler groups and almost completely decomposable groups.
Algebraic Operads: An Algorithmic Companion presents a systematic treatment of Groebner bases in several contexts. The book builds up to the theory of Groebner bases for operads due to the second author and Khoroshkin as well as various applications of the corresponding diamond lemmas in algebra. The authors present a variety of topics including: noncommutative Groebner bases and their applications to the construction of universal enveloping algebras; Groebner bases for shuffle algebras which can be used to solve questions about combinatorics of permutations; and operadic Groebner bases, important for applications to algebraic topology, and homological and homotopical algebra. The last chapters of the book combine classical commutative Groebner bases with operadic ones to approach some classification problems for operads. Throughout the book, both the mathematical theory and computational methods are emphasized and numerous algorithms, examples, and exercises are provided to clarify and illustrate the concrete meaning of abstract theory.
The first and only book to make this research available in the West Concise and accessible: proofs and other technical matters are kept to a minimum to help the non-specialist Each chapter is self-contained to make the book easy-to-use
Our self-contained volume provides an accessible introduction to linear and multilinear algebra as well as tensor calculus. Besides the standard techniques for linear algebra, multilinear algebra and tensor calculus, many advanced topics are included where emphasis is placed on the Kronecker product and tensor product. The Kronecker product has widespread applications in signal processing, discrete wavelets, statistical physics, Hopf algebra, Yang-Baxter relations, computer graphics, fractals, quantum mechanics, quantum computing, entanglement, teleportation and partial trace. All these fields are covered comprehensively.The volume contains many detailed worked-out examples. Each chapter includes useful exercises and supplementary problems. In the last chapter, software implementations are provided for different concepts. The volume is well suited for pure and applied mathematicians as well as theoretical physicists and engineers.New topics added to the third edition are: mutually unbiased bases, Cayley transform, spectral theorem, nonnormal matrices, Gateaux derivatives and matrices, trace and partial trace, spin coherent states, Clebsch-Gordan series, entanglement, hyperdeterminant, tensor eigenvalue problem, Carleman matrix and Bell matrix, tensor fields and Ricci tensors, and software implementations.
"This remarkable reference covers topics such as quantum groups, Hopf Galois theory, actions and coactions of Hopf algebras, smash and crossed products, and the structure of cosemisimple Hopf algebras. "
'The Greate Invention of Algebra' casts new light on the work of Thomas Harriot (c.1560-1621), an innovative thinker and practitioner in several branches of the mathematical sciences, including navigation, astronomy, optics, geometry, and algebra. Although on his death Harriot left behind over four thousand manuscript sheets, much of his work remains unpublished. This book focuses on one hundred and forty of Harriot's manuscript pages, those concerned with the structure and solution of equations. The original material has been carefully ordered, translated, and annotated to provide the first complete edition of his work on this subject, and an extended introduction provides the reader with a lucid background to the work and explains its contents. Illustrations from the manuscripts provide fascinating reference material. The appendix discusses correlations between Harriot's manuscripts and the texts of his contemporaries Viète, Warner, and Torporley. The clear and concise exposition makes this an excellent reference volume for historians of mathematics and those interested in the history of science. This is an important new resource for understanding the development of algebra in seventeenth-century England.
This book distinguishes itself from the many other textbooks on the topic of linear algebra by including mathematical and computational chapters along with examples and exercises with Matlab. In recent years, the use of computers in many areas of engineering and science has made it essential for students to get training in numerical methods and computer programming. Here, the authors use both Matlab and SciLab software as well as covering core standard material. It is intended for libraries; scientists and researchers; pharmaceutical industry.
Presents easy to understand proofs of some of the most difficult results about polynomials demonstrated by means of applications.
This 2004 introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. Various important settings, such as group algebras, Lie algebras, and quantum groups, are sketched at the outset to describe typical problems and provide motivation. The text then develops and illustrates the standard ingredients of the theory: e.g., skew polynomial rings, rings of fractions, bimodules, Krull dimension, linked prime ideals. Recurring emphasis is placed on prime ideals, which play a central role in applications to representation theory. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. Material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
Algebra, as we know it today, consists of many different ideas,
concepts and results. A reasonable estimate of the number of these
different items would be somewhere between 50,000 and 200,000. Many
of these have been named and many more could (and perhaps should)
have a name or a convenient designation. Even the nonspecialist is
likely to encounter most of these, either somewhere in the
literature, disguised as a definition or a theorem or to hear about
them and feel the need for more information. If this happens, one
should be able to find enough information in this Handbook to judge
if it is worthwhile to pursue the quest.
"Presents the proceedings of the recently held Third International Conference on Commutative Ring Theory in Fez, Morocco. Details the latest developments in commutative algebra and related areas-featuring 26 original research articles and six survey articles on fundamental topics of current interest. Examines wide-ranging developments in commutative algebra, together with connections to algebraic number theory and algebraic geometry."
Larson IS student success. INTERMEDIATE ALGEBRA: ALGEBRA WITHIN REACH, 6E, International Edition owes its success to the hallmark features for which the Larson team is known: learning by example, a straightforward and accessible writing style, emphasis on visualization through the use of graphs to reinforce algebraic and numeric solutions and to interpret data, and comprehensive exercise sets. These pedagogical features are carefully coordinated to ensure that students are better able to make connections between mathematical concepts and understand the content. With a bright, appealing design, the new Sixth Edition builds on the Larson tradition of guided learning by incorporating a comprehensive range of student success materials to help develop students' proficiency and conceptual understanding of algebra. The text also continues coverage and integration of geometry in examples and exercises.
The authors examine topics in modern physics and offer a unitary and original treatment of the fundamental problems of the dynamics of physical systems, as well as a description of the nuclear matter within a framework of general relativity. They show that some physical phenomena studied at two different resolution scales (e.g. microscale, cosmological scale), apparently with no connection between them, become compatible by means of the operational procedures, acting either as some "hidden" symmetries, or harmonic-type mappings. The book is addressed to the students, researchers and university/high school teachers working in the fields of mathematics, physics, and chemistry.
Teaching quantum computation and information is notoriously difficult, because it requires covering subjects from various fields of science, organizing these subjects consistently in a unified way despite their tendency to favor their specific languages, and overcoming the subjects' abstract and theoretical natures, which offer few examples of actual realizations. In this book, we have organized all the subjects required to understand the principles of quantum computation and information processing in a manner suited to physics, mathematics, and engineering courses as early as undergraduate studies.In addition, we provide a supporting package of quantum simulation software from Wolfram Mathematica, specialists in symbolic calculation software. Throughout the book's main text, demonstrations are provided that use the software package, allowing the students to deepen their understanding of each subject through self-practice. Readers can change the code so as to experiment with their own ideas and contemplate possible applications. The information in this book reflects many years of experience teaching quantum computation and information. The quantum simulation-based demonstrations and the unified organization of the subjects are both time-tested and have received very positive responses from the students who have experienced them.
Elementary Differential Equations, Second Edition is written with the knowledge that there has been a dramatic change in the past century in how solutions to differential equations are calculated. However, the way the topic has been taught in introductory courses has barely changed to reflect these advances, which leaves students at a disadvantage. This second edition has been created to address these changes and help instructors facilitate new teaching methods and the latest tools, which includes computers. The text is designed to help instructors who want to use computers in their classrooms. It accomplishes this by emphasizing and integrating computers in teaching elementary or ordinary differential equations. Many examples and exercises included in the text require the use of computer software to solve problems. It should be noted that since instructors use their own preferred software, this book has been written to be independent of any specific software package. Features: Focuses on numerical methods and computing to generate solutions Features extensive coverage of nonlinear differential equations and nonlinear systems Includes software programs to solve problems in the text which are located on the author's website Contains a wider variety of non-mathematical models than any competing textbook This second edition is a valuable, up-to-date tool for instructors teaching courses about differential equations. It serves as an excellent introductory textbook for undergraduate students majoring in applied mathematics, computer science, various engineering disciplines and other sciences. They also will find that the textbook will aide them greatly in their professional careers because of its instructions on how to use computers to solve equations.
Introduction to Radar Analysis, Second Edition is a major revision of the popular textbook. It is written within the context of communication theory as well as the theory of signals and noise. By emphasizing principles and fundamentals, the textbook serves as a vital source for students and engineers. Part I bridges the gap between communication, signal analysis, and radar. Topics include modulation techniques and associated Continuous Wave (CW) and pulsed radar systems. Part II is devoted to radar signal processing and pulse compression techniques. Part III presents special topics in radar systems including radar detection, radar clutter, target tracking, phased arrays, and Synthetic Aperture Radar (SAR). Many new exercise are included and the author provides comprehensive easy-to-follow mathematical derivations of all key equations and formulas. The author has worked extensively for the U.S. Army, the U.S. Space and Missile Command, and other military agencies. This is not just a textbook for senior level and graduates students, but a valuable tool for practicing radar engineers. Features Authored by a leading industry radar professional. Comprehensive up-to-date coverage of radar systems analysis issues. Easy to follow mathematical derivations of all equations and formulas Numerous graphical plots and table format outputs. One part of the book is dedicated to radar waveforms and radar signal processing.
This useful book, which grew out of the author's lectures at Berkeley, presents some 400 exercises of varying degrees of difficulty in classical ring theory, together with complete solutions, background information, historical commentary, bibliographic details, and indications of possible improvements or generalizations. The book should be especially helpful to graduate students as a model of the problem-solving process and an illustration of the applications of different theorems in ring theory. The author also discusses "the folklore of the subject: the `tricks of the trade' in ring theory, which are well known to the experts in the field but may not be familiar to others, and for which there is usually no good reference". The problems are from the following areas: the Wedderburn-Artin theory of semisimple rings, the Jacobson radical, representation theory of groups and algebras, (semi)prime rings, (semi)primitive rings, division rings, ordered rings, (semi)local rings, the theory of idempotents, and (semi)perfect rings. Problems in the areas of module theory, category theory, and rings of quotients are not included, since they will appear in a later book. T. W. Hungerford, Mathematical Reviews
Combinatory logic started as a programme in the foundation of mathematics and in an historical context at a time when such endeavours attracted the most gifted among the mathematicians. This small volume arose under quite differ ent circumstances, namely within the context of reworking the mathematical foundations of computer science. I have been very lucky in finding gifted students who agreed to work with me and chose, for their Ph. D. theses, subjects that arose from my own attempts 1 to create a coherent mathematical view of these foundations. The result of this collaborative work is presented here in the hope that it does justice to the individual contributor and that the reader has a chance of judging the work as a whole. E. Engeler ETH Zurich, April 1994 lCollected in Chapter III, An Algebraization of Algorithmics, in Algorithmic Properties of Structures, Selected Papers of Erwin Engeler, World Scientific PubJ. Co., Singapore, 1993, pp. 183-257. I Historical and Philosophical Background Erwin Engeler In the fall of 1928 a young American turned up at the Mathematical Institute of Gottingen, a mecca of mathematicians at the time; he was a young man with a dream and his name was H. B. Curry. He felt that he had the tools in hand with which to solve the problem of foundations of mathematics mice and for all. His was an approach that came to be called "formalist" and embodied that later became known as Combinatory Logic."
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
Metaharmonic Lattice Point Theory covers interrelated methods and tools of spherically oriented geomathematics and periodically reflected analytic number theory. The book establishes multi-dimensional Euler and Poisson summation formulas corresponding to elliptic operators for the adaptive determination and calculation of formulas and identities of weighted lattice point numbers, in particular the non-uniform distribution of lattice points. The author explains how to obtain multi-dimensional generalizations of the Euler summation formula by interpreting classical Bernoulli polynomials as Green's functions and linking them to Zeta and Theta functions. To generate multi-dimensional Euler summation formulas on arbitrary lattices, the Helmholtz wave equation must be converted into an associated integral equation using Green's functions as bridging tools. After doing this, the weighted sums of functional values for a prescribed system of lattice points can be compared with the corresponding integral over the function. Exploring special function systems of Laplace and Helmholtz equations, this book focuses on the analytic theory of numbers in Euclidean spaces based on methods and procedures of mathematical physics. It shows how these fundamental techniques are used in geomathematical research areas, including gravitation, magnetics, and geothermal.
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-B lund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods. |
You may like...
Smart STEM-Driven Computer Science…
Vytautas Stuikys, Renata Burbaite
Hardcover
R3,403
Discovery Miles 34 030
Explainable Deep Learning AI - Methods…
Jenny Benois-Pineau, Romain Bourqui, …
Paperback
R2,572
Discovery Miles 25 720
Dynamic Business Process Formation for…
Nikolay Mehandjiev, Paul Grefen
Hardcover
R4,157
Discovery Miles 41 570
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
R884
Discovery Miles 8 840
|