![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
New Edition: A Course on Abstract Algebra (2nd Edition)This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' lecture notes at the Department of Mathematics, National Chung Cheng University of Taiwan, it begins with a description of the algebraic structures of the ring and field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's Theorem and Sylow's Theorems follow as applications of group theory. Ring theory forms the second part of abstract algebra, with the ring of polynomials and the matrix ring as basic examples. The general theory of ideals as well as maximal ideals in the rings of polynomials over the rational numbers are also discussed. The final part of the book focuses on field theory, field extensions and then Galois theory to illustrate the correspondence between the Galois groups and field extensions.This textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
This book describes the construction of algebraic models which represent the operations of the double-entry accounting system. It presents a novel and comprehensive treatment of the subject and utilizes the methods and tools of abstract algebra, including automata, graph theory and monoids.
Quaternionic and Clifford analysis have in recent years become increasingly important tools in the analysis of partial differential equations and their application in mathematical physics and engineering. This book reflects the main ideas in the field and covers quaternions and multivectors, Clifford valued functions and forms, Clifford operator calculus, boundary value problems, numerical Clifford analysis. Further results and research problems are also included The authors’ intention is to equip the reader with the understanding necessary to adapt these methods to their own work. It is assumed that the reader is familiar with the basics of complex function theory in one variable, functional analysis and algebra. With an ever increasing literature on quaternionic and Clifford analysis the need for an accessible and applicable book on the subject has never been greater. This volume meets this need and will be invaluable for students and researchers in mathematics, physics and engineering who wish to apply quaternionic and Clifford analysis in their work.
Man sollte weniger danach streben, die Grenzen der mathe- matischen Wissenschaften zu erweitern, als vielmehr danach, den bereits vorhandenen Stoff aus umfassenderen Gesichts- punkten zu betrachten - E. Study Today most mathematicians who know about Kronecker's theory of divisors know about it from having read Hermann Weyl's lectures on algebraic number theory [We], and regard it, as Weyl did, as an alternative to Dedekind's theory of ideals. Weyl's axiomatization of what he calls "Kronecker's" theory is built-as Dedekind's theory was built-around unique factor- ization. However, in presenting the theory in this way, Weyl overlooks one of Kronecker's most valuable ideas, namely, the idea that the objective of the theory is to define greatest com- mon divisors, not to achieve factorization into primes. The reason Kronecker gave greatest common divisors the primary role is simple: they are independent of the ambient field while factorization into primes is not. The very notion of primality depends on the field under consideration-a prime in one field may factor in a larger field-so if the theory is founded on factorization into primes, extension of the field entails a completely new theory. Greatest common divisors, on the other hand, can be defined in a manner that does not change at all when the field is extended (see 1.16). Only after he has laid the foundation of the theory of divisors does Kronecker consider factorization of divisors into divisors prime in some specified field.
Drawing on the authors' use of the Hadamard-related theory in several successful engineering projects, Theory and Applications of Higher-Dimensional Hadamard Matrices, Second Edition explores the applications and dimensions of Hadamard matrices. This edition contains a new section on the applications of higher-dimensional Hadamard matrices to the areas of telecommunications and information security. The first part of the book presents fast algorithms, updated constructions, existence results, and generalized forms for Walsh and Hadamard matrices. The second section smoothly transitions from two-dimensional cases to three-, four-, and six-dimensional Walsh and Hadamard matrices and transforms. In the third part, the authors discuss how the n-dimensional Hadamard matrices of order 2 are applied to feed-forward networking, stream ciphers, bent functions, and error correcting codes. They also cover the Boolean approach of Hadamard matrices. The final part provides examples of applications of Hadamard-related ideas to the design and analysis of one-dimensional sequences and two-dimensional arrays. The theory and ideas of Hadamard matrices can be used in many areas of communications and information security. Through the research problems found in this book, readers can further explore the fascinating issues and applications of the theory of higher-dimensional Hadamard matrices.
This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises are found throughout the book.
This book is directed primarily at undergraduate and postgraduate students interested to get acquainted with the representation theory of Lie algebras. The book treats the case of the smallest simple Lie algebra, namely, the Lie algebra sl_2. It contains classical contents including the description of all finite-dimensional modules and an introduction to the universal enveloping algebras with its primitive ideals, alongside non-classical contents including the description of all simple weight modules, the category of all weight modules, a detailed description of the category O, and especially, a description of all simple modules. The book also contains an account of a new research direction: the categorification of simple finite-dimensional modules.
Linear algebra provides the essential mathematical tools to tackle all the problems in Science. Introduction to Linear Algebra is primarily aimed at students in applied fields (e.g. Computer Science and Engineering), providing them with a concrete, rigorous approach to face and solve various types of problems for the applications of their interest. This book offers a straightforward introduction to linear algebra that requires a minimal mathematical background to read and engage with. Features Presented in a brief, informative and engaging style Suitable for a wide broad range of undergraduates Contains many worked examples and exercises
The book covers various topics of computer algebra methods, algorithms and software applied to scientific computing. An important topic presented in the book, which may be of interest to researchers and engineers, is the application of computer algebra methods to the development of new efficient analytic and numerical solvers, both for ordinary and partial differential equations. A specific feature of the book is an intense use of advanced software systems such as Mathematica, Maple etc. for the solution of problems as outlined above and for the industrial application of computer algebra for simulation. The book will be useful for researchers and engineers who apply advanced computer algebra methods for the solution of their problems.
This book explores the application of field theory (patterns of interaction) to Russian economic history, and how social and political fields mediate the influences of institutions, structures, discourses and ideologies in the creation and dissemination of economic thinking, theory and practice. Using focused cases on Russia's economy from the mid-nineteenth century to the present, Hass and co-authors expand the empirical basis of field studies to provide new material on Russian economic history. The cases are divided into two complementary halves: i) The role of fields of institutions, discourses, and structures in the development of Russian economic thought, especially economic theories and discourses; and ii) The role of fields in the real adoption and implementation of policies in Soviet and Russian economic history. With developed discussion of fields and field theory, this book moves beyond sociology to demonstrate to other disciplines the relation of fields and field theory to other frameworks and methodological considerations for field analysis, as well as providing new empirical insights and narratives not as well-known abroad.
This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book", became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now.This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics.The material and references have been brought up to date by the editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life.The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds. remove
This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book", became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now.This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics.The material and references have been brought up to date by the editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life.The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds. remove
Bruhat-Tits theory that suffices for the main applications. Part III treats modern topics that have become important in current research. Part IV provides a few sample applications of the theory. The appendices contain further details on the topic of integral models.
Arming readers with both theoretical and practical knowledge, Advanced Linear Algebra for Engineers with MATLAB (R) provides real-life problems that readers can use to model and solve engineering and scientific problems in fields ranging from signal processing and communications to electromagnetics and social and health sciences. Facilitating a unique understanding of rapidly evolving linear algebra and matrix methods, this book: Outlines the basic concepts and definitions behind matrices, matrix algebra, elementary matrix operations, and matrix partitions, describing their potential use in signal and image processing applications Introduces concepts of determinants, inverses, and their use in solving linear equations that result from electrical and mechanical-type systems Presents special matrices, linear vector spaces, and fundamental principles of orthogonality, using an appropriate blend of abstract and concrete examples and then discussing associated applications to enhance readers' visualization of presented concepts Discusses linear operators, eigenvalues, and eigenvectors, and explores their use in matrix diagonalization and singular value decomposition Extends presented concepts to define matrix polynomials and compute functions using several well-known methods, such as Sylvester's expansion and Cayley-Hamilton Introduces state space analysis and modeling techniques for discrete and continuous linear systems, and explores applications in control and electromechanical systems, to provide a complete solution for the state space equation Shows readers how to solve engineering problems using least square, weighted least square, and total least square techniques Offers a rich selection of exercises and MATLAB (R) assignments that build a platform to enhance readers' understanding of the material Striking the appropriate balance between theory and real-life applications, this book provides both advanced students and professionals in the field with a valuable reference that they will continually consult.
This book offers an introduction to the theory of groupoids and their representations encompassing the standard theory of groups. Using a categorical language, developed from simple examples, the theory of finite groupoids is shown to knit neatly with that of groups and their structure as well as that of their representations is described. The book comprises numerous examples and applications, including well-known games and puzzles, databases and physics applications. Key concepts have been presented using only basic notions so that it can be used both by students and researchers interested in the subject. Category theory is the natural language that is being used to develop the theory of groupoids. However, categorical presentations of mathematical subjects tend to become highly abstract very fast and out of reach of many potential users. To avoid this, foundations of the theory, starting with simple examples, have been developed and used to study the structure of finite groups and groupoids. The appropriate language and notions from category theory have been developed for students of mathematics and theoretical physics. The book presents the theory on the same level as the ordinary and elementary theories of finite groups and their representations, and provides a unified picture of the same. The structure of the algebra of finite groupoids is analysed, along with the classical theory of characters of their representations. Unnecessary complications in the formal presentation of the subject are avoided. The book offers an introduction to the language of category theory in the concrete setting of finite sets. It also shows how this perspective provides a common ground for various problems and applications, ranging from combinatorics, the topology of graphs, structure of databases and quantum physics.
One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory, which has inspired hundreds of papers about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations.
This book offers fascinating and modern perspectives into the theory and practice of the historical subject of polynomial root-finding, rejuvenating the field via polynomiography, a creative and novel computer visualization that renders spectacular images of a polynomial equation. Polynomiography will not only pave the way for new applications of polynomials in science and mathematics, but also in art and education. The book presents a thorough development of the basic family, arguably the most fundamental family of iteration functions, deriving many surprising and novel theoretical and practical applications such as: algorithms for approximation of roots of polynomials and analytic functions, polynomiography, bounds on zeros of polynomials, formulas for the approximation of Pi, and characterizations or visualizations associated with a homogeneous linear recurrence relation. These discoveries and a set of beautiful images that provide new visions, even of the well-known polynomials and recurrences, are the makeup of a very desirable book. This book is a must for mathematicians, scientists, advanced undergraduates and graduates, but is also for anyone with an appreciation for the connections between a fantastically creative art form and its ancient mathematical foundations.
This classic, written by two young instructors who became giants in their field, has shaped the understanding of modern algebra for generations of mathematicians and remains a valuable reference and text for self study and college courses.
There is good reason to be excited about Linear Algebra. With the world becoming increasingly digital, Linear Algebra is gaining more and more importance. When we send texts, share video, do internet searches, there are Linear Algebra algorithms in the background that make it work. This concise introduction to Linear Algebra is authored by a leading researcher presents a book that covers all the requisite material for a first course on the topic in a more practical way. The book focuses on the development of the mathematical theory and presents many applications to assist instructors and students to master the material and apply it to their areas of interest, whether it be to further their studies in mathematics, science, engineering, statistics, economics, or other disciplines. Linear Algebra has very appealing features: *It is a solid axiomatic based mathematical theory that is accessible to a large variety of students. *It has a multitude of applications from many different fields, ranging from traditional science and engineering applications to more 'daily life' applications. *It easily allows for numerical experimentation through the use of a variety of readily available software (both commercial and open source). Several suggestions of different software are made. While MATLAB is certainly still a favorite choice, open-source programs such as Sage (especially among algebraists) and the Python libraries are increasingly popular. This text guides the student to try out different programs by providing specific commands.
Linear Algebra: A First Course with Applications explores the fundamental ideas of linear algebra, including vector spaces, subspaces, basis, span, linear independence, linear transformation, eigenvalues, and eigenvectors, as well as a variety of applications, from inventories to graphics to Googlea (TM)s PageRank. Unlike other texts on the subject, this classroom-tested book gives students enough time to absorb the material by focusing on vector spaces early on and using computational sections as numerical interludes. It offers introductions to Maplea"[, MATLABA(R), and TI-83 Plus for calculating matrix inverses, determinants, eigenvalues, and eigenvectors. Moving from the specific to the general, the author raises questions, provides motivation, and discusses strategy before presenting answers. Discussions of motivation and strategy include content and context to help students learn.
Unlike most elementary books on matrices, A Combinatorial Approach to Matrix Theory and Its Applications employs combinatorial and graph-theoretical tools to develop basic theorems of matrix theory, shedding new light on the subject by exploring the connections of these tools to matrices. After reviewing the basics of graph theory, elementary counting formulas, fields, and vector spaces, the book explains the algebra of matrices and uses the Konig digraph to carry out simple matrix operations. It then discusses matrix powers, provides a graph-theoretical definition of the determinant using the Coates digraph of a matrix, and presents a graph-theoretical interpretation of matrix inverses. The authors develop the elementary theory of solutions of systems of linear equations and show how to use the Coates digraph to solve a linear system. They also explore the eigenvalues, eigenvectors, and characteristic polynomial of a matrix; examine the important properties of nonnegative matrices thatare part of the Perron-Frobenius theory; and study eigenvalue inclusion regions and sign-nonsingular matrices. The final chapter presents applications to electrical engineering, physics, and chemistry. Using combinatorial and graph-theoretical tools, this book enables a solid understanding of the fundamentals of matrix theory and its application to scientific areas.
Krichever and Novikov introduced certain classes of infinite dimensional Lie algebras to extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them to a more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are still manageable. This book gives an introduction for the newcomer to this exciting field of ongoing research in mathematics and will be a valuable source of reference for the experienced researcher. Beside the basic constructions and results also applications are presented.
Computational Intelligence Assisted Design framework mobilises computational resources, makes use of multiple Computational Intelligence (CI) algorithms and reduces computational costs. This book provides examples of real-world applications of technology. Case studies have been used to show the integration of services, cloud, big data technology and space missions. It focuses on computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. This book provides readers with wide-scale information on CI paradigms and algorithms, inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without difficulty through a few tested MATLAB source codes
Constant false alarm rate detection processes are important in radar signal processing. Such detection strategies are used as an alternative to optimal Neyman-Pearson based decision rules, since they can be implemented as a sliding window process running on a radar range-Doppler map. This book examines the development of such detectors in a modern framework. With a particular focus on high resolution X-band maritime surveillance radar, recent approaches are outlined and examined. Performance is assessed when the detectors are run in real X-band radar clutter. The book introduces relevant mathematical tools to allow the reader to understand the development, and follow its implementation.
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes. |
You may like...
Algebraic Methods for Nonlinear Control…
Giuseppe Conte, Claude H. Moog, …
Hardcover
R2,752
Discovery Miles 27 520
Algebraic Methods in General Rough Sets
aMani, Gianpiero Cattaneo, …
Hardcover
R3,483
Discovery Miles 34 830
Fuzzy Sets, Logics and Reasoning about…
Didier Dubois, Henri Prade, …
Hardcover
R4,246
Discovery Miles 42 460
|