![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.
Matrices are used in many areas such as staustics, econometrics, mathematics, natural sciences and engineering. This handbook provides a collection of numerous results for easy reference in one source, together with a comprehensive dictionary of matrices and related terms. The book is structured and cross-referenced so that specific results and information are easy to locate References for proofs and computational algorithms are provided. Researchers, professionals and students using matrix techniques will find this book to be an invaluable resource for their work. Contents
Rings, Modules, Algebras, and Abelian Groups summarizes the proceedings of a recent algebraic conference held at Venice International University in Italy. Surveying the most influential developments in the field, this reference reviews the latest research on Abelian groups, algebras and their representations, module and ring theory, and topological algebraic structures, and provides more than 600 current references and 570 display equations for further exploration of the topic. It provides stimulating discussions from world-renowned names including Laszlo Fuchs, Robert Gilmer, Saharon Shelah, Daniel Simson, and Richard Swan to celebrate 40 years of study on cumulative rings. Describing emerging theories
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
Quaternionic and Clifford analysis have in recent years become increasingly important tools in the analysis of partial differential equations and their application in mathematical physics and engineering. This book reflects the main ideas in the field and covers quaternions and multivectors, Clifford valued functions and forms, Clifford operator calculus, boundary value problems, numerical Clifford analysis. Further results and research problems are also included The authors’ intention is to equip the reader with the understanding necessary to adapt these methods to their own work. It is assumed that the reader is familiar with the basics of complex function theory in one variable, functional analysis and algebra. With an ever increasing literature on quaternionic and Clifford analysis the need for an accessible and applicable book on the subject has never been greater. This volume meets this need and will be invaluable for students and researchers in mathematics, physics and engineering who wish to apply quaternionic and Clifford analysis in their work.
The feedback control of nonlinear differential and algebraic equation systems (DAEs) is a relatively new subject. Developing steadily over the last few years, it has generated growing interest inspired by its engineering applications and by advances in the feedback control of nonlinear ordinary differential equations (ODEs). This book-the first of its kind-introduces the reader to the inherent characteristics of nonlinear DAE systems and the methods used to address their control, then discusses the significance of DAE systems to the modeling and control of chemical processes. Within a unified framework, Control of Nonlinear Differential Algebraic Equation Systems presents recent results on the stabilization, output tracking, and disturbance elimination for a large class of nonlinear DAE systems.
This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and logalgebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
This book focuses on recent developments in the theory of vertex algebras, with particular emphasis on affine vertex algebras, affine W-algebras, and W-algebras appearing in physical theories such as logarithmic conformal field theory. It is widely accepted in the mathematical community that the best way to study the representation theory of affine Kac-Moody algebras is by investigating the representation theory of the associated affine vertex and W-algebras. In this volume, this general idea can be seen at work from several points of view. Most relevant state of the art topics are covered, including fusion, relationships with finite dimensional Lie theory, permutation orbifolds, higher Zhu algebras, connections with combinatorics, and mathematical physics. The volume is based on the INdAM Workshop Affine, Vertex and W-algebras, held in Rome from 11 to 15 December 2017. It will be of interest to all researchers in the field.
"Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
A thorough understanding of statistical mechanics depends strongly on the insights and manipulative skills that are acquired through the solving of problems. Problems on Statistical Mechanics provides over 120 problems with model solutions, illustrating both basic principles and applications that range from solid-state physics to cosmology. An introductory chapter provides a summary of the basic concepts and results that are needed to tackle the problems, and also serves to establish the notation that is used throughout the book. The problems themselves occupy five chapters, progressing from the simpler aspects of thermodynamics and equilibrium statistical ensembles to the more challenging ideas associated with strongly interacting systems and nonequilibrium processes. Comprehensive solutions to all of the problems are designed to illustrate efficient and elegant problem-solving techniques. Where appropriate, the authors incorporate extended discussions of the points of principle that arise in the course of the solutions. The appendix provides useful mathematical formulae.
This volume is an outcome of the International Conference on Algebra in celebration of the 70th birthday of Professor Shum Kar-Ping which was held in Gadjah Mada University on 7-10 October 2010. As a consequence of the wide coverage of his research interest and work, it presents 54 research papers, all original and referred, describing the latest research and development, and addressing a variety of issues and methods in semigroups, groups, rings and modules, lattices and Hopf Algebra. The book also provides five well-written expository survey articles which feature the structure of finite groups by A Ballester-Bolinches, R Esteban-Romero, and Yangming Li; new results of Groebner-Shirshov basis by L A Bokut, Yuqun Chen, and K P Shum; polygroups and their properties by B Davvaz; main results on abstract characterizations of algebras of n-place functions obtained in the last 40 years by Wieslaw A Dudek and Valentin S Trokhimenko; Inverse semigroups and their generalizations by X M Ren and K P Shum. Recent work on cones of metrics and combinatorics done by M M Deza et al. is included.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation description of the operations performed rationale for the chosen approach problems the code overcomes or addresses Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems complements the first two volumes in the series by offering examples of computer code. The first two volumes dealt with new research and an overview of the types of applications that could be taken with GAs. This volume differs from its predecessors by specifically concentrating on specific functions in genetic algorithms, serving as the only compilation of useful and usable computer code in the field.
The second volume of this work contains Parts 2 and 3 of the "Handbook of Coding Theory". Part 2, "Connections", is devoted to connections between coding theory and other branches of mathematics and computer science. Part 3, "Applications", deals with a variety of applications for coding.
This volume lays down the foundations of a theory of rings based on finite maps. The purpose of the ring is entirely discussed in terms of the global properties of the one-turn map. Proposing a theory of rings based on such maps, this work offers another perspective on storage ring theory.
This popular textbook was thoughtfully and specifically tailored to introducing undergraduate students to linear algebra. The second edition has been carefully revised to improve upon its already successful format and approach. In particular, the author added a chapter on quadratic forms, making this one of the most comprehensive introductory texts on linear algebra.
Clear prose, tight organization, and a wealth of examples and computational techniques make Basic Matrix Algebra with Algorithms and Applications an outstanding introduction to linear algebra. The author designed this treatment specifically for freshman majors in mathematical subjects and upper-level students in natural resources, the social sciences, business, or any discipline that eventually requires an understanding of linear models. With extreme pedagogical clarity that avoids abstraction wherever possible, the author emphasizes minimal polynomials and their computation using a Krylov algorithm. The presentation is highly visual and relies heavily on work with a graphing calculator to allow readers to focus on concepts and techniques rather than on tedious arithmetic. Supporting materials, including test preparation Maple worksheets, are available for download from the Internet. This unassuming but insightful and remarkably original treatment is organized into bite-sized, clearly stated objectives. It goes well beyond the LACSG recommendations for a first course while still implementing their philosophy and core material. Classroom tested with great success, it prepares readers well for the more advanced studies their fields ultimately will require.
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
The first and second editions of this successful textbook have been highly praised for their lucid and detailed coverage of abstract algebra. In this third edition, the author has carefully revised and extended his treatment, particularly the material on rings and fields, to provide an even more satisfying first course in abstract algebra.
This text introduces abstract algebra using familiar and concrete examples that illustrate each new concept as it is presented. It includes the coverage of such topics as the role of careful proof in algebra; linear algebra as grounded in geometry; groups as expressions of symmetry; subgroups and subsystems leading to lattice theory; and more.
This is an examination of number theory as it emerged in the 17th through to the 19th century, leading to an understanding of today's research problems on the basis of their historical evolution. The book introduces the reader to the mathematicians Fermat, Euler, Lagrange, Legendre and Gauss. It goes on to tackle advanced themes in this field, often dubbed the queen of mathematics.
Based on and enriched by the long-term teaching experience of the authors, this volume covers the major themes of mathematics in engineering and technical specialties. The book addresses the elements of linear algebra and analytic geometry, differential calculus of a function of one variable, and elements of higher algebra. On each theme the authors first present short theoretical overviews and then go on to give problems to be solved. The authors provide the solutions to some typical, relatively difficult problems and guidelines for solving them. The authors consider the development of the self-dependent thinking ability of students in the construction of problems and indicate which problems are relatively difficult. The book is geared so that some of the problems presented can be solved in class, and others are meant to be solved independently. An extensive, explanatory solution of at least one typical problem is included, with emphasis on applications, formulas, and rules. This volume is primarily addressed to advanced students of engineering and technical specialties as well as to engineers/technicians and instructors of mathematics. Key features: Presents the theoretical background necessary for solving problems, including definitions, rules, formulas, and theorems on the particular theme Provides an extended solution of at least one problem on every theme and guidelines for solving some difficult problems Selects problems for independent study as well as those for classroom time, taking into account the similarity of both sets of problems Differentiates relatively difficult problems from others for those who want to study mathematics more deeply Provides answers to the problems within the text rather than at the back of the book, enabling more direct verification of problem solutions Presents a selection of problems and solutions that are very interesting not only for the students but also for professor-teacher staff
There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. The text concentrates on the study of binary forms (polynomials) in characteristic zero, and uses analytical as well as algebraic tools to study and classify invariants, symmetry, equivalence and canonical forms. A variety of innovations make this text of interest even to veterans of the subject; these include the use of differential operators and the transform approach to the symbolic method, extension of results to arbitrary functions, graphical methods for computing identities and Hilbert bases, complete systems of rationally and functionally independent covariants, introduction of Lie group and Lie algebra methods, as well as a new geometrical theory of moving frames and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition.
Spectral sequences are among the most elegant, most powerful, and most complicated methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first third of the book treats the algebraic foundations for this sort of homological algebra, starting from informal calculations, to give the novice a familiarity with the range of applications possible. The heart of the book is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
Giving an easily accessible elementary introduction to the
algebraic theory of quadratic forms, this book covers both Witt's
theory and Pfister's theory of quadratic forms. |
![]() ![]() You may like...
Advances in Phase Space Analysis of…
Antonio Bove, Daniele Del Santo, …
Hardcover
R2,908
Discovery Miles 29 080
Numerical Algebra, Matrix Theory…
Peter Benner, Matthias Bollhoefer, …
Hardcover
R3,066
Discovery Miles 30 660
Time-dependent Problems in Imaging and…
Barbara Kaltenbacher, Thomas Schuster, …
Hardcover
R4,265
Discovery Miles 42 650
Frames and Other Bases in Abstract and…
Isaac Pesenson, Quoc Thong Le Gia, …
Hardcover
R4,474
Discovery Miles 44 740
Domain Decomposition Methods in Science…
Petter E. Bjorstad, Susanne C. Brenner, …
Hardcover
R4,465
Discovery Miles 44 650
Spectral and High Order Methods for…
Marco L. Bittencourt, Ney A. Dumont, …
Hardcover
R5,794
Discovery Miles 57 940
Elements of Scientific Computing
Aslak Tveito, Hans Petter Langtangen, …
Hardcover
R1,605
Discovery Miles 16 050
|