![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
The book provides a detailed account of basic coalgebra and Hopf algebra theory with emphasis on Hopf algebras which are pointed, semisimple, quasitriangular, or are of certain other quantum groups. It is intended to be a graduate text as well as a research monograph.
This volume is an outcome of the International Conference on Algebra in celebration of the 70th birthday of Professor Shum Kar-Ping which was held in Gadjah Mada University on 7-10 October 2010. As a consequence of the wide coverage of his research interest and work, it presents 54 research papers, all original and referred, describing the latest research and development, and addressing a variety of issues and methods in semigroups, groups, rings and modules, lattices and Hopf Algebra. The book also provides five well-written expository survey articles which feature the structure of finite groups by A Ballester-Bolinches, R Esteban-Romero, and Yangming Li; new results of Groebner-Shirshov basis by L A Bokut, Yuqun Chen, and K P Shum; polygroups and their properties by B Davvaz; main results on abstract characterizations of algebras of n-place functions obtained in the last 40 years by Wieslaw A Dudek and Valentin S Trokhimenko; Inverse semigroups and their generalizations by X M Ren and K P Shum. Recent work on cones of metrics and combinatorics done by M M Deza et al. is included.
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form ( cylindric in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin. "
The book aims to survey recent developments in quantum algebras and related topics. Quantum groups were introduced by Drinfeld and Jimbo in 1985 in their work on Yang Baxter equations. The subject from the very beginning has been an interesting one for both mathematics and theoretical physics. For example, Yangian is a special example of quantum group, corresponding to rational solution of Yang Baxter equation. Viewed as a generalization of the symmetric group, Yangians also have close connections to algebraic combinatorics. This is the proceeding for the International Workshop on Quantized Algebra and Physics. The workshop aims to gather experts and young investigators from China and abroad to discuss research problems in integrable systems, conformal field theory, string theory, Lie theory, quantum groups including Yangians and their representations.
"This collection of essays spans pure and applied mathematics. Readers interested in mathematical research and historical aspects of mathematics will appreciate the enlightening content of these essays. Highlighting the pervasive nature of mathematics today in different areas, the book also covers the spread of mathematical ideas and techniques in areas ranging from computer science to physics to biology"--
Algebraic graph theory is a fascinating subject concerned with the interplay between algebra and graph theory. Algebraic tools can be used to give surprising and elegant proofs of graph theoretic facts, and there are many interesting algebraic objects associated with graphs. The authors take an inclusive view of the subject, and present a wide range of topics. These range from standard classics, such as the characterization of line graphs by eigenvalues, to more unusual areas such as geometric embeddings of graphs and the study of graph homomorphisms. The authors' goal has been to present each topic in a self-contained fashion, presenting the main tools and ideas, with an emphasis on their use in understanding concrete examples. A substantial proportion of the book covers topics that have not appeared in book form before, and as such it provides an accessible introduction to the research literature and to important open questions in modern algebraic graph theory. This book is primarily aimed at graduate students and researchers in graph theory, combinatorics, or discrete mathematics in general. However, all the necessary graph theory is developed from scratch, so the only pre-requisite for reading it is a first course in linear algebra and a small amount of elementary group theory. It should be accessible to motivated upper-level undergraduates. Chris Godsil is a full professor in the Department of Combinatorics and Optimization at the University of Waterloo. His main research interests lie in the interactions between algebra and combinatorics, in particular the application of algebraic techniques to graphs, designs and codes. He has published more than 70 papers in these areas, is a founding editor of "The Journal of Algebraic Combinatorics" and is the author of the book "Algebraic Combinatorics". Gordon Royle teaches in the Department of Computer Science & Software Engineering at the University of Western Australia. His main research interests lie in the application of computers to combinatorial problems, in particular the cataloguing, enumeration and investigation of graphs, designs and finite geometries. He has published more than 30 papers in graph theory, design theory and finite geometry.
A large portion of the book can be used as a textbook for graduate and upper level undergraduate students in mathematics, communication engineering, computer science and other fields. The remaining part can be used as references for specialists. Explicit construction and computation of finite fields are emphasized. In particular, the construction of irreducible polynomials and normal basis of finite field is included. A detailed treatment of optimal normal basis and Galoi's rings is included. It is the first time that the galois rings are in book form.
Under intense scrutiny for the last few decades, Multiple Objective Decision Making (MODM) has been useful for dealing with the multiple-criteria decisions and planning problems associated with many important applications in fields including management science, engineering design, and transportation. Rough set theory has also proved to be an effective mathematical tool to counter the vague description of objects in fields such as artificial intelligence, expert systems, civil engineering, medical data analysis, data mining, pattern recognition, and decision theory. Rough Multiple Objective Decision Making is perhaps the first book to combine state-of-the-art application of rough set theory, rough approximation techniques, and MODM. It illustrates traditional techniques-and some that employ simulation-based intelligent algorithms-to solve a wide range of realistic problems. Application of rough theory can remedy two types of uncertainty (randomness and fuzziness) which present significant drawbacks to existing decision-making methods, so the authors illustrate the use of rough sets to approximate the feasible set, and they explore use of rough intervals to demonstrate relative coefficients and parameters involved in bi-level MODM. The book reviews relevant literature and introduces models for both random and fuzzy rough MODM, applying proposed models and algorithms to problem solutions. Given the broad range of uses for decision making, the authors offer background and guidance for rough approximation to real-world problems, with case studies that focus on engineering applications, including construction site layout planning, water resource allocation, and resource-constrained project scheduling. The text presents a general framework of rough MODM, including basic theory, models, and algorithms, as well as a proposed methodological system and discussion of future research.
This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects in a more abstract setting to be relatively painless. The chapters dealing with applications help to reinforce the concepts and methods developed in the context of more down-to-earth problems.Most introductory texts in abstract algebra either avoid cosets, factor objects and homomorphisms completely or introduce them towards the end of the book. In this book, these topics are dealt with early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible, even if there are alternative methods of proof.
The book is devoted to varieties of linear singular integral
equations, with special emphasis on their methods of solution. It
introduces the singular integral equations and their applications
to researchers as well as graduate students of this fascinating and
growing branch of applied mathematics.
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
Computational Intelligence Assisted Design framework mobilises computational resources, makes use of multiple Computational Intelligence (CI) algorithms and reduces computational costs. This book provides examples of real-world applications of technology. Case studies have been used to show the integration of services, cloud, big data technology and space missions. It focuses on computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. This book provides readers with wide-scale information on CI paradigms and algorithms, inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without difficulty through a few tested MATLAB source codes
Constant false alarm rate detection processes are important in radar signal processing. Such detection strategies are used as an alternative to optimal Neyman-Pearson based decision rules, since they can be implemented as a sliding window process running on a radar range-Doppler map. This book examines the development of such detectors in a modern framework. With a particular focus on high resolution X-band maritime surveillance radar, recent approaches are outlined and examined. Performance is assessed when the detectors are run in real X-band radar clutter. The book introduces relevant mathematical tools to allow the reader to understand the development, and follow its implementation.
Drawing on rich classroom observations of educators teaching in China and the U.S., this book details an innovative and effective approach to teaching algebra at the elementary level, namely, "teaching through example-based problem solving" (TEPS). Recognizing young children's particular cognitive and developmental capabilities, this book powerfully argues for the importance of infusing algebraic thinking into early grade mathematics teaching and illustrates how this has been achieved by teachers in U.S. and Chinese contexts. Documenting best practice and students' responses to example-based instruction, the text demonstrates that this TEPS approach - which involves the use of worked examples, representations, and deep questions - helps students learn and master fundamental mathematical ideas, making it highly effective in developing algebraic readiness and mathematical understanding. This text will benefit post-graduate students, researchers, and academics in the fields of mathematics, STEM, and elementary education, as well as algebra research more broadly. Those interested in teacher education, classroom practice, and developmental and cognitive psychology will also find this volume of interest.
This is the first book of its kind which teaches matrix algebra, allowing the student to learn the material by actually working with matrix objects in modern computer environment of R. Instead of a calculator, R is a vastly more powerful free software and graphics system. The book provides a comprehensive overview of matrix theory without being bogged down in proofs or tedium. The reader can check each matrix result with numerical examples of exactly what they mean and understand their implications. The book does not shy away from advanced topics, especially the ones with practical applications.
This is the first book of its kind which teaches matrix algebra, allowing the student to learn the material by actually working with matrix objects in modern computer environment of R. Instead of a calculator, R is a vastly more powerful free software and graphics system.The book provides a comprehensive overview of matrix theory without being bogged down in proofs or tedium. The reader can check each matrix result with numerical examples of exactly what they mean and understand their implications. The book does not shy away from advanced topics, especially the ones with practical applications.
This monograph is concerned with exchange rings in various conditions related to stable range. Diagonal reduction of regular matrices and cleanness of square matrices are also discussed. Readers will come across various topics: cancellation of modules, comparability of modules, cleanness, monoid theory, matrix theory, K-theory, topology, amongst others. This is a first-ever book that contains many of these topics considered under stable range conditions. It will be of great interest to researchers and graduate students involved in ring and module theories.
This textbook, set for a one or two semester course in commutative algebra, provides an introduction to commutative algebra at the postgraduate and research levels. The main prerequisites are familiarity with groups, rings and fields. Proofs are self-contained. The book will be useful to beginners and experienced researchers alike. The material is so arranged that the beginner can learn through self-study or by attending a course. For the experienced researcher, the book may serve to present new perspectives on some well-known results, or as a reference.
This textbook, set for a one or two semester course in commutative algebra, provides an introduction to commutative algebra at the postgraduate and research levels. The main prerequisites are familiarity with groups, rings and fields. Proofs are self-contained. The book will be useful to beginners and experienced researchers alike. The material is so arranged that the beginner can learn through self-study or by attending a course. For the experienced researcher, the book may serve to present new perspectives on some well-known results, or as a reference.
A comprehensive overview of nonlinear H control theory for both continuous-time and discrete-time systems, Nonlinear H -Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear H -control, nonlinear H -filtering, mixed H2/ H -nonlinear control and filtering, nonlinear H -almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter. Recent progress in developing computational schemes for solving the Hamilton-Jacobi equation (HJE) has facilitated the application of Hamilton-Jacobi theory in both mechanics and control. As there is currently no efficient systematic analytical or numerical approach for solving them, the biggest bottle-neck to the practical application of the nonlinear equivalent of the H -control theory has been the difficulty in solving the Hamilton-Jacobi-Isaacs partial differential-equations (or inequalities). In light of this challenge, the author hopes to inspire continuing research and discussion on this topic via examples and simulations, as well as helpful notes and a rich bibliography. Nonlinear H -Control, Hamiltonian Systems and Hamilton-Jacobi Equations was written for practicing professionals, educators, researchers and graduate students in electrical, computer, mechanical, aeronautical, chemical, instrumentation, industrial and systems engineering, as well as applied mathematics, economics and management.
This book Algebraic Modeling Systems - Modeling and Solving Real World Optimization Problems - deals with the aspects of modeling and solving real-world optimization problems in a unique combination. It treats systematically the major algebraic modeling languages (AMLs) and modeling systems (AMLs) used to solve mathematical optimization problems. AMLs helped significantly to increase the usage of mathematical optimization in industry. Therefore it is logical consequence that the GOR (Gesellschaft fur Operations Research) Working Group Mathematical Optimization in Real Life had a second meeting devoted to AMLs, which, after 7 years, followed the original 71st Meeting of the GOR (Gesellschaft fur Operations Research) Working Group Mathematical Optimization in Real Life which was held under the title Modeling Languages in Mathematical Optimization during April 23-25, 2003 in the German Physics Society Conference Building in Bad Honnef, Germany. While the first meeting resulted in the book Modeling Languages in Mathematical Optimization, this book is an offspring of the 86th Meeting of the GOR working group which was again held in Bad Honnef under the title Modeling Languages in Mathematical Optimization.
There is good reason to be excited about Linear Algebra. With the world becoming increasingly digital, Linear Algebra is gaining more and more importance. When we send texts, share video, do internet searches, there are Linear Algebra algorithms in the background that make it work. This concise introduction to Linear Algebra is authored by a leading researcher presents a book that covers all the requisite material for a first course on the topic in a more practical way. The book focuses on the development of the mathematical theory and presents many applications to assist instructors and students to master the material and apply it to their areas of interest, whether it be to further their studies in mathematics, science, engineering, statistics, economics, or other disciplines. Linear Algebra has very appealing features: *It is a solid axiomatic based mathematical theory that is accessible to a large variety of students. *It has a multitude of applications from many different fields, ranging from traditional science and engineering applications to more 'daily life' applications. *It easily allows for numerical experimentation through the use of a variety of readily available software (both commercial and open source). Several suggestions of different software are made. While MATLAB is certainly still a favorite choice, open-source programs such as Sage (especially among algebraists) and the Python libraries are increasingly popular. This text guides the student to try out different programs by providing specific commands.
Mixing elementary results and advanced methods, Algebraic Approach to Differential Equations aims to accustom differential equation specialists to algebraic methods in this area of interest. It presents material from a school organized by The Abdus Salam International Centre for Theoretical Physics (ICTP), the Bibliotheca Alexandrina, and the International Centre for Pure and Applied Mathematics (CIMPA).
Combinatorics of Spreads and Parallelisms covers all known finite and infinite parallelisms as well as the planes comprising them. It also presents a complete analysis of general spreads and partitions of vector spaces that provide groups enabling the construction of subgeometry partitions of projective spaces. The book describes general partitions of finite and infinite vector spaces, including Sperner spaces, focal-spreads, and their associated geometries. Since retraction groups provide quasi-subgeometry and subgeometry partitions of projective spaces, the author thoroughly discusses subgeometry partitions and their construction methods. He also features focal-spreads as partitions of vector spaces by subspaces. In addition to presenting many new examples of finite and infinite parallelisms, the book shows that doubly transitive or transitive t-parallelisms cannot exist unless the parallelism is a line parallelism. Along with the author's other three books (Subplane Covered Nets, Foundations of Translation Planes, Handbook of Finite Translation Planes), this text forms a solid, comprehensive account of the complete theory of the geometries that are connected with translation planes in intricate ways. It explores how to construct interesting parallelisms and how general spreads of vector spaces are used to study and construct subgeometry partitions of projective spaces.
The present monograph on matrix partial orders, the first on this topic, makes a unique presentation of many partial orders on matrices that have fascinated mathematicians for their beauty and applied scientists for their wide-ranging application potential. Except for the Loewner order, the partial orders considered are relatively new and came into being in the late 1970s. After a detailed introduction to generalized inverses and decompositions, the three basic partial orders - namely, the minus, the sharp and the star - and the corresponding one-sided orders are presented using various generalized inverses. The authors then give a unified theory of all these partial orders as well as study the parallel sums and shorted matrices, the latter being studied at great length. Partial orders of modified matrices are a new addition. Finally, applications are given in statistics and electrical network theory. Deceased |
![]() ![]() You may like...
Proceedings of the Lehigh County…
Lehigh County Historical Society 1n
Hardcover
R1,034
Discovery Miles 10 340
Linear Algebra - Pearson New…
John B. Fraleigh, Raymond Beauregard
Paperback
R2,318
Discovery Miles 23 180
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
|