![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the strength of materials and the theory of elasticity. They next introduce variational principles, including mixed or generalized principles, and derive integral forms of the governing equations. Discussions then move to computational methods, including the finite element method, and these are developed to solve the differential and integral equations. New in the second edition: A one-dimensional introduction to the finite element method, complete with illustrations of numerical mesh refinement Expansion of the use of Galerkin's method. Discussion of recent developments in the theory of bending and torsion of thin-walled beams. An appendix summarizing the fundamental equations in differential and variational form Completely new treatment of stability, including detailed examples Discussion of the principal values of geometric properties and stresses Additional exercises As a textbook or as a reference, Mechanics of Structures builds a unified, variational foundation for structure mechanics, which in turn forms the basis for the computational solid mechanics so essential to modern engineering.
Winner of the 2015 Prose Award for Best Mathematics Book! In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.
Employing a closed set-theoretic foundation for interval
computations, Global Optimization Using Interval Analysis
simplifies algorithm construction and increases generality of
interval arithmetic. This Second Edition contains an up-to-date
discussion of interval methods for solving systems of nonlinear
equations and global optimization problems. It expands and improves
various aspects of its forerunner and features significant new
discussions, such as those on the use of consistency methods to
enhance algorithm performance. Provided algorithms are guaranteed
to find and bound all solutions to these problems despite bounded
errors in data, in approximations, and from use of rounded
arithmetic.
This comprehensive, encyclopedic text in four parts aims to give the reader - from the graduate student to the researcher/practitioner - a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, thereby updating and modernizing the semigroup theory literature.
This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and logalgebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
This book originated from a Discussion Group (Teaching Linear Algebra) that was held at the 13th International Conference on Mathematics Education (ICME-13). The aim was to consider and highlight current efforts regarding research and instruction on teaching and learning linear algebra from around the world, and to spark new collaborations. As the outcome of the two-day discussion at ICME-13, this book focuses on the pedagogy of linear algebra with a particular emphasis on tasks that are productive for learning. The main themes addressed include: theoretical perspectives on the teaching and learning of linear algebra; empirical analyses related to learning particular content in linear algebra; the use of technology and dynamic geometry software; and pedagogical discussions of challenging linear algebra tasks. Drawing on the expertise of mathematics education researchers and research mathematicians with experience in teaching linear algebra, this book gathers work from nine countries: Austria, Germany, Israel, Ireland, Mexico, Slovenia, Turkey, the USA and Zimbabwe.
Category theory is a general mathematical theory of structures and of structures of structures. It occupied a central position in contemporary mathematics as well as computer science. This book describes the history of category theory whereby illuminating its symbiotic relationship to algebraic topology, homological algebra, algebraic geometry and mathematical logic and elaboratively develops the connections with the epistemological significance.
Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.
Your hands-on guide to real-world applications of linear algebra Does linear algebra leave you feeling lost? No worries --this easy-to-follow guide explains the how and the why of solving linear algebra problems in plain English. From matrices to vector spaces to linear transformations, you'll understand the key concepts and see how they relate to everything from genetics to nutrition to spotted owl extinction. Line up the basics -- discover several different approaches to organizing numbers and equations, and solve systems of equations algebraically or with matrices Relate vectors and linear transformations -- link vectors and matrices with linear combinations and seek solutions of homogeneous systems Evaluate determinants -- see how to perform the determinant function on different sizes of matrices and take advantage of Cramer's rule Hone your skills with vector spaces -- determine the properties of vector spaces and their subspaces and see linear transformation in action Tackle eigenvalues and eigenvectors -- define and solve for eigenvalues and eigenvectors and understand how they interact with specific matrices Open the book and find: Theoretical and practical ways of solving linear algebra problems Definitions of terms throughout and in the glossary New ways of looking at operations How linear algebra ties together vectors, matrices, determinants, and linear transformations Ten common mathematical representations of Greek letters Real-world applications of matrices and determinants
Die Bibliotheca Teubneriana, gegrundet 1849, ist die weltweit alteste, traditionsreichste und umfangreichste Editionsreihe griechischer und lateinischer Literatur von der Antike bis zur Neuzeit. Pro Jahr erscheinen 4-5 neue Editionen. Samtliche Ausgaben werden durch eine lateinische oder englische Praefatio erganzt. Die wissenschaftliche Betreuung der Reihe obliegt einem Team anerkannter Philologen: Gian Biagio Conte (Scuola Normale Superiore di Pisa) Marcus Deufert (Universitat Leipzig) James Diggle (University of Cambridge) Donald J. Mastronarde (University of California, Berkeley) Franco Montanari (Universita di Genova) Heinz-Gunther Nesselrath (Georg-August-Universitat Goettingen) Oliver Primavesi (Ludwig-Maximilians Universitat Munchen) Michael D. Reeve (University of Cambridge) Richard J. Tarrant (Harvard University) Vergriffene Titel werden als Print-on-Demand-Nachdrucke wieder verfugbar gemacht. Zudem werden alle Neuerscheinungen der Bibliotheca Teubneriana parallel zur gedruckten Ausgabe auch als eBook angeboten. Die alteren Bande werden sukzessive ebenfalls als eBook bereitgestellt. Falls Sie einen vergriffenen Titel bestellen moechten, der noch nicht als Print-on-Demand angeboten wird, schreiben Sie uns an: [email protected] Samtliche in der Bibliotheca Teubneriana erschienenen Editionen lateinischer Texte sind in der Datenbank BTL Online elektronisch verfugbar.
This volume contains the proceedings of the Arizona Winter School 2016, which was held from March 12-16, 2016, at The University of Arizona, Tucson, AZ. In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with $\mathrm{SL}_2(\mathbb{F}_q)$ and some of its subgroups as the key examples. The article by Etienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from $\ell$-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic $L$-functions, and Mumford-Tate groups.
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature.
This carefully prepared manuscript presents elimination theory in weighted projective spaces over arbitrary noetherian commutative base rings. Elimination theory is a classical topic in commutative algebra and algebraic geometry, and it has become of renewed importance recently in the context of applied and computational algebra. This monograph provides a valuable complement to sparse elimination theory in that it presents in careful detail the algebraic difficulties from working over general base rings. This is essential for applications in arithmetic geometry and many other places. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples.
This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.
Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p.LetI be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If H = R[I\G/I] denotes the pro-p Iwahori- Hecke algebra of G over R we clarify the relation between the category of H-modules and the category of G-equivariant coefficient systems on the semisimple Bruhat-Tits building of G.IfR is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth G-representations generated by their I-invariants. In general, it gives a description of the derived category of H-modules in terms of smooth G-representations and yields a functor to generalized (?, ?)-modules extending the constructions of Colmez, Schneider and Vigneras.
Glider Representations offer several applications across different fields within Mathematics, thereby motivating the introduction of this new glider theory and opening numerous doors for future research, particularly with respect to more complex filtration chains. Features * Introduces new concepts in the Theory of Rings and Modules * Suitable for researchers and graduate students working in this area, and as supplementary reading for courses in Group Theory, Ring Theory, Lie Algebras and Sheaf Theory * The first book to explicitly outline this new approach to gliders and fragments and associated concepts
Coverage of matrix algebra for economists and students of economics Matrix Algebra for Applied Economics explains the important tool of matrix algebra for students of economics and practicing economists. It includes examples that demonstrate the foundation operations of matrix algebra and illustrations of using the algebra for a variety of economic problems. The authors present the scope and basic definitions of matrices, their arithmetic and simple operations, and describe special matrices and their properties, including the analog of division. They provide in-depth coverage of necessary theory and deal with concepts and operations for using matrices in real-life situations. They discuss linear dependence and independence, as well as rank, canonical forms, generalized inverses, eigenroots, and vectors. Topics of prime interest to economists are shown to be simplified using matrix algebra in linear equations, regression, linear models, linear programming, and Markov chains. Highlights include:
Matrix Algebra for Applied Economics provides excellent guidance for advanced undergraduate students and also graduate students. Practicing economists who want to sharpen their skills will find this book both practical and easy-to-read, no matter what their applied interests.
For courses in Beginning & Intermediate Algebra (Combined). The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab (TM) courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135307872 / 9780135307878 Algebra: A Combined Approach Plus MyLab Math with Pearson eText - Access Card Package, 6/e Package consists of: 0135225035 / 9780135225035 Algebra: A Combined Approach 0135260191 / 9780135260197 MyLab Math with Pearson eText - Standalone Access Card - for Algebra: A Combined Approach
Non-Linear Differential Equations and Dynamical Systems is the second book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This second book consists of two chapters (chapters 3 and 4 of the set). The first chapter considers non-linear differential equations of first order, including variable coefficients. A first-order differential equation is equivalent to a first-order differential in two variables. The differentials of order higher than the first and with more than two variables are also considered. The applications include the representation of vector fields by potentials. The second chapter in the book starts with linear oscillators with coefficients varying with time, including parametric resonance. It proceeds to non-linear oscillators including non-linear resonance, amplitude jumps, and hysteresis. The non-linear restoring and friction forces also apply to electromechanical dynamos. These are examples of dynamical systems with bifurcations that may lead to chaotic motions. Presents general first-order differential equations including non-linear like the Ricatti equation Discusses differentials of the first or higher order in two or more variables Includes discretization of differential equations as finite difference equations Describes parametric resonance of linear time dependent oscillators specified by the Mathieu functions and other methods Examines non-linear oscillations and damping of dynamical systems including bifurcations and chaotic motions
Higher-Order Differential Equations and Elasticity is the third book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This third book consists of two chapters (chapters 5 and 6 of the set). The first chapter in this book concerns non-linear differential equations of the second and higher orders. It also considers special differential equations with solutions like envelopes not included in the general integral. The methods presented include special differential equations, whose solutions include the general integral and special integrals not included in the general integral for myriad constants of integration. The methods presented include dual variables and differentials, related by Legendre transforms, that have application in thermodynamics. The second chapter concerns deformations of one (two) dimensional elastic bodies that are specified by differential equations of: (i) the second-order for non-stiff bodies like elastic strings (membranes); (ii) fourth-order for stiff bodies like bars and beams (plates). The differential equations are linear for small deformations and gradients and non-linear otherwise. The deformations for beams include bending by transverse loads and buckling by axial loads. Buckling and bending couple non-linearly for plates. The deformations depend on material properties, for example isotropic or anisotropic elastic plates, with intermediate cases such as orthotropic or pseudo-isotropic. Discusses differential equations having special integrals not contained in the general integral, like the envelope of a family of integral curves Presents differential equations of the second and higher order, including non-linear and with variable coefficients Compares relation of differentials with the principles of thermodynamics Describes deformations of non-stiff elastic bodies like strings and membranes and buckling of stiff elastic bodies like bars, beams, and plates Presents linear and non-linear waves in elastic strings, membranes, bars, beams, and plates
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.
Featuring presentations from the Fourth International Conference on Commutative Algebra held in Fez, Morocco, this reference presents trends in the growing area of commutative algebra. With contributions from nearly 50 internationally renowned researchers, the book emphasizes innovative applications and connections to algebraic number theory, geometry, and homological and computational algebra. Presenting challenging problems of contemporary interest, discussions include linear Diophantine equations, going-down and going-up properties, and graded modules and analytic spread. They also cover algebroid curves and chain conditions, ideals and modules, and integral independence.
Clear prose, tight organization, and a wealth of examples and computational techniques make Basic Matrix Algebra with Algorithms and Applications an outstanding introduction to linear algebra. The author designed this treatment specifically for freshman majors in mathematical subjects and upper-level students in natural resources, the social sciences, business, or any discipline that eventually requires an understanding of linear models.
This proceedings is composed of the papers resulting from the NATO work-shop "Perspectives in Ring Theory" and the work-shop "Geometry and Invariant The ory of Representations of Quivers" . Three reports on problem sessions have been induced in the part corresponding to the work-shop where they belonged. One more report on a problem session, the "lost" problem session, will be published elsewhere eventually. vii Acknowledgement The meeting became possible by the financial support of the Scientific Affairs Division of NATO. The people at this division have been very helpful in the orga nization of the meeting, in particular we commemorate Dr. Mario di Lullo, who died unexpectedly last year, but who has been very helpful with the organization of earlier meetings in Ring Theory. For additional financial support we thank the national foundation for scientific research (NFWO), the rector of the University of Antwerp, UIA, and the Belgian Ministry of Education. We also gladly acknowledge support from the Belgian Friends of the Hebrew University and the chairman Prof. P. Van Remoortere who honored Prof. S. Amitsur for his continuous contributions to the mathematical activities at the University of Antwerp. I thank the authors who contributed their paper(s) to this proceedings and the lecturers for their undisposable contributions towards the success of the work-shop. Finally I thank Danielle for allowing me to spoil another holiday period in favor of a congress." |
You may like...
View of Sir Isaac Newton's Philosophy
Henry 1694-1771 Pemberton
Hardcover
R1,017
Discovery Miles 10 170
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,507
Discovery Miles 25 070
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
|