![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Glider Representations offer several applications across different fields within Mathematics, thereby motivating the introduction of this new glider theory and opening numerous doors for future research, particularly with respect to more complex filtration chains. Features * Introduces new concepts in the Theory of Rings and Modules * Suitable for researchers and graduate students working in this area, and as supplementary reading for courses in Group Theory, Ring Theory, Lie Algebras and Sheaf Theory * The first book to explicitly outline this new approach to gliders and fragments and associated concepts
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan's famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci's proof of the Poincare-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo's theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant's structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his "Clifford algebra analogue" of the Hopf-Koszul-Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. "
Non-Linear Differential Equations and Dynamical Systems is the second book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This second book consists of two chapters (chapters 3 and 4 of the set). The first chapter considers non-linear differential equations of first order, including variable coefficients. A first-order differential equation is equivalent to a first-order differential in two variables. The differentials of order higher than the first and with more than two variables are also considered. The applications include the representation of vector fields by potentials. The second chapter in the book starts with linear oscillators with coefficients varying with time, including parametric resonance. It proceeds to non-linear oscillators including non-linear resonance, amplitude jumps, and hysteresis. The non-linear restoring and friction forces also apply to electromechanical dynamos. These are examples of dynamical systems with bifurcations that may lead to chaotic motions. Presents general first-order differential equations including non-linear like the Ricatti equation Discusses differentials of the first or higher order in two or more variables Includes discretization of differential equations as finite difference equations Describes parametric resonance of linear time dependent oscillators specified by the Mathieu functions and other methods Examines non-linear oscillations and damping of dynamical systems including bifurcations and chaotic motions
Higher-Order Differential Equations and Elasticity is the third book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This third book consists of two chapters (chapters 5 and 6 of the set). The first chapter in this book concerns non-linear differential equations of the second and higher orders. It also considers special differential equations with solutions like envelopes not included in the general integral. The methods presented include special differential equations, whose solutions include the general integral and special integrals not included in the general integral for myriad constants of integration. The methods presented include dual variables and differentials, related by Legendre transforms, that have application in thermodynamics. The second chapter concerns deformations of one (two) dimensional elastic bodies that are specified by differential equations of: (i) the second-order for non-stiff bodies like elastic strings (membranes); (ii) fourth-order for stiff bodies like bars and beams (plates). The differential equations are linear for small deformations and gradients and non-linear otherwise. The deformations for beams include bending by transverse loads and buckling by axial loads. Buckling and bending couple non-linearly for plates. The deformations depend on material properties, for example isotropic or anisotropic elastic plates, with intermediate cases such as orthotropic or pseudo-isotropic. Discusses differential equations having special integrals not contained in the general integral, like the envelope of a family of integral curves Presents differential equations of the second and higher order, including non-linear and with variable coefficients Compares relation of differentials with the principles of thermodynamics Describes deformations of non-stiff elastic bodies like strings and membranes and buckling of stiff elastic bodies like bars, beams, and plates Presents linear and non-linear waves in elastic strings, membranes, bars, beams, and plates
Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions
With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.
Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results. This book leads the reader through a research excursion, beginning from the Gaussian circle problem of the early nineteenth century, via the classical Hardy-Landau lattice point identity and the Hardy conjecture of the first half of the twentieth century, and the Shannon sampling theorem (its variants, generalizations and the fascinating stories about the cardinal series) of the second half of the twentieth century. The authors demonstrate how all these facets have resulted in new multivariate extensions of lattice point identities and Shannon-type sampling procedures of high practical applicability, thereby also providing a general reproducing kernel Hilbert space structure of an associated Paley-Wiener theory over (potato-like) bounded regions (cf. the cover illustration of the geoid), as well as the whole Euclidean space. All in all, the context of this book represents the fruits of cross-fertilization of various subjects, namely elliptic partial differential equations, Fourier inversion theory, constructive approximation involving Euler and Poisson summation formulas, inverse problems reflecting the multivariate antenna problem, and aspects of analytic and geometric number theory. Features: New convergence criteria for alternating series in multi-dimensional analysis Self-contained development of lattice point identities of analytic number theory Innovative lattice point approach to Shannon sampling theory Useful for students of multivariate constructive approximation, and indeed anyone interested in the applicability of signal processing to inverse problems.
Basic Math & Pre-Algebra For Dummies, 2nd Edition (9781119293637) was previously published as Basic Math & Pre-Algebra For Dummies, 2nd Edition (9781118791981). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methods Relevant cultural vernacular and references Standard For Dummiesmaterials that match the current standard and design Basic Math & Pre-Algebra For Dummies takes the intimidation out of tricky operations and helps you get ready for algebra!
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics.
A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.
Designed for use in a second course on linear algebra, Matrix Theory and Applications with MATLAB covers the basics of the subject-from a review of matrix algebra through vector spaces to matrix calculus and unitary similarity-in a presentation that stresses insight, understanding, and applications. Among its most outstanding features is the integration of MATLAB throughout the text. Each chapter includes a MATLAB subsection that discusses the various commands used to do the computations in that section and offers code for the graphics and some algorithms used in the text.
For courses in Basic Mathematics. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab (TM) courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135307880 / 9780135307885 Basic College Mathematics with Early Integers Plus MyLab Math with Pearson eText - Access Card Package, 4e Package consists of: 013517693X / 9780135176931 Basic College Mathematics with Early Integers 0135190320 / 9780135190326 MyLab Math with Pearson eText - Standalone Access Card - for Basic College Mathematics with Early Integers
"Analyzes algebras of concrete approximation methods detailing prerequisites, local principles, and lifting theorems. Covers fractality and Fredholmness. Explains the phenomena of the asymptotic splitting of the singular values, and more."
A remarkable interplay exists between the fields of elliptic functions and orthogonal polynomials. In the first monograph to explore their connections, Elliptic Polynomials combines these two areas of study, leading to an interesting development of some basic aspects of each. It presents new material about various classes of polynomials and about the odd Jacobi elliptic functions and their inverses.
Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.
For courses in Introductory Algebra. Active learning for active minds The authors of the Mathematics in Action series believe that students learn mathematics best by actually doing the math within a realistic context. If a student is taking this course, why teach them the same content in the same way that they've already seen-yet did not retain? Following this principle, the authors provide a series of guided-discovery activities that help students to construct, reflect upon, and apply mathematical concepts, deepening their conceptual understanding as they do so. The active style of learning develops critical-thinking skills and mathematical literacy, while keeping the concepts in the context of real applications. The 6th Edition includes updated examples and activities for maximum interest and relevance, along with new and enhanced digital resources in MyLab (TM) Math to support conceptual understanding for students, wherever and whenever they need it. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135281555 / 9780135281550 Mathematics in Action: An Introduction to Algebraic, Graphical, and Numerical Problem Solving Plus MyLab Math with Pearson eText - Access Card Package Package consists of: 0135115620 / 9780135115626 Mathematics in Action: An Introduction to Algebraic, Graphical, and Numerical Problem Solving 013516818X / 9780135168189 MyLab Math with Pearson eText - Standalone Access Card - for Mathematics in Action: An Introduction to Algebraic, Graphical, and Numerical Problem Solving
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature.
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.
The feedback control of nonlinear differential and algebraic equation systems (DAEs) is a relatively new subject. Developing steadily over the last few years, it has generated growing interest inspired by its engineering applications and by advances in the feedback control of nonlinear ordinary differential equations (ODEs). This book-the first of its kind-introduces the reader to the inherent characteristics of nonlinear DAE systems and the methods used to address their control, then discusses the significance of DAE systems to the modeling and control of chemical processes. Within a unified framework, Control of Nonlinear Differential Algebraic Equation Systems presents recent results on the stabilization, output tracking, and disturbance elimination for a large class of nonlinear DAE systems.
Larson IS student success. INTERMEDIATE ALGEBRA: ALGEBRA WITHIN REACH, 6E, International Edition owes its success to the hallmark features for which the Larson team is known: learning by example, a straightforward and accessible writing style, emphasis on visualization through the use of graphs to reinforce algebraic and numeric solutions and to interpret data, and comprehensive exercise sets. These pedagogical features are carefully coordinated to ensure that students are better able to make connections between mathematical concepts and understand the content. With a bright, appealing design, the new Sixth Edition builds on the Larson tradition of guided learning by incorporating a comprehensive range of student success materials to help develop students' proficiency and conceptual understanding of algebra. The text also continues coverage and integration of geometry in examples and exercises.
"Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
A thorough understanding of statistical mechanics depends strongly on the insights and manipulative skills that are acquired through the solving of problems. Problems on Statistical Mechanics provides over 120 problems with model solutions, illustrating both basic principles and applications that range from solid-state physics to cosmology. An introductory chapter provides a summary of the basic concepts and results that are needed to tackle the problems, and also serves to establish the notation that is used throughout the book. The problems themselves occupy five chapters, progressing from the simpler aspects of thermodynamics and equilibrium statistical ensembles to the more challenging ideas associated with strongly interacting systems and nonequilibrium processes. Comprehensive solutions to all of the problems are designed to illustrate efficient and elegant problem-solving techniques. Where appropriate, the authors incorporate extended discussions of the points of principle that arise in the course of the solutions. The appendix provides useful mathematical formulae.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation description of the operations performed rationale for the chosen approach problems the code overcomes or addresses Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems complements the first two volumes in the series by offering examples of computer code. The first two volumes dealt with new research and an overview of the types of applications that could be taken with GAs. This volume differs from its predecessors by specifically concentrating on specific functions in genetic algorithms, serving as the only compilation of useful and usable computer code in the field.
This volume lays down the foundations of a theory of rings based on finite maps. The purpose of the ring is entirely discussed in terms of the global properties of the one-turn map. Proposing a theory of rings based on such maps, this work offers another perspective on storage ring theory.
For courses in Basic Math & Beginning Algebra (combined). The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab (TM) courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135307899 / 9780135307892 Developmental Mathematics Plus MyLab Math with Pearson eText - Access Card Package, 4e Package consists of: 0134896017 / 9780134896014 Developmental Mathematics 0135171482 / 9780135171486 MyLab Math with Pearson eText - Standalone Access Card - for Developmental Mathematics |
You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,048
Discovery Miles 10 480
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,089
Discovery Miles 30 890
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
|