![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
Volume IV of the series "Mathematics and Physics Applied to Science and Technology," this comprehensive six-book set covers: Linear Differential Equations and Oscillators Non-linear Differential Equations and Dynamical Systems Higher-order Differential Equations and Elasticity Simultaneous Systems of Differential Equations and Multi-dimensional Oscillators Singular Differential Equations and Special Functions Classification and Examples of Differential Equations and their Applications
Winner of the 2015 Prose Award for Best Mathematics Book! In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.
This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.
This comprehensive, encyclopedic text in four parts aims to give the reader - from the graduate student to the researcher/practitioner - a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, thereby updating and modernizing the semigroup theory literature.
This carefully prepared manuscript presents elimination theory in weighted projective spaces over arbitrary noetherian commutative base rings. Elimination theory is a classical topic in commutative algebra and algebraic geometry, and it has become of renewed importance recently in the context of applied and computational algebra. This monograph provides a valuable complement to sparse elimination theory in that it presents in careful detail the algebraic difficulties from working over general base rings. This is essential for applications in arithmetic geometry and many other places. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples. Necessary tools concerning monoids of weights, generic polynomials and regular sequences are treated independently in the first part of the book. Many supplements added to each chapter provide extra details and insightful examples.
Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the strength of materials and the theory of elasticity. They next introduce variational principles, including mixed or generalized principles, and derive integral forms of the governing equations. Discussions then move to computational methods, including the finite element method, and these are developed to solve the differential and integral equations. New in the second edition: A one-dimensional introduction to the finite element method, complete with illustrations of numerical mesh refinement Expansion of the use of Galerkin's method. Discussion of recent developments in the theory of bending and torsion of thin-walled beams. An appendix summarizing the fundamental equations in differential and variational form Completely new treatment of stability, including detailed examples Discussion of the principal values of geometric properties and stresses Additional exercises As a textbook or as a reference, Mechanics of Structures builds a unified, variational foundation for structure mechanics, which in turn forms the basis for the computational solid mechanics so essential to modern engineering.
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.
Glider Representations offer several applications across different fields within Mathematics, thereby motivating the introduction of this new glider theory and opening numerous doors for future research, particularly with respect to more complex filtration chains. Features * Introduces new concepts in the Theory of Rings and Modules * Suitable for researchers and graduate students working in this area, and as supplementary reading for courses in Group Theory, Ring Theory, Lie Algebras and Sheaf Theory * The first book to explicitly outline this new approach to gliders and fragments and associated concepts
Employing a closed set-theoretic foundation for interval
computations, Global Optimization Using Interval Analysis
simplifies algorithm construction and increases generality of
interval arithmetic. This Second Edition contains an up-to-date
discussion of interval methods for solving systems of nonlinear
equations and global optimization problems. It expands and improves
various aspects of its forerunner and features significant new
discussions, such as those on the use of consistency methods to
enhance algorithm performance. Provided algorithms are guaranteed
to find and bound all solutions to these problems despite bounded
errors in data, in approximations, and from use of rounded
arithmetic.
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.
This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois representations. One of the outstanding problems in arithmetic is a generalization of class field theory to non-abelian Galois extension of number fields. In this volume, we discuss some relations between this problem and cusp forms of weight 1.
Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results. This book leads the reader through a research excursion, beginning from the Gaussian circle problem of the early nineteenth century, via the classical Hardy-Landau lattice point identity and the Hardy conjecture of the first half of the twentieth century, and the Shannon sampling theorem (its variants, generalizations and the fascinating stories about the cardinal series) of the second half of the twentieth century. The authors demonstrate how all these facets have resulted in new multivariate extensions of lattice point identities and Shannon-type sampling procedures of high practical applicability, thereby also providing a general reproducing kernel Hilbert space structure of an associated Paley-Wiener theory over (potato-like) bounded regions (cf. the cover illustration of the geoid), as well as the whole Euclidean space. All in all, the context of this book represents the fruits of cross-fertilization of various subjects, namely elliptic partial differential equations, Fourier inversion theory, constructive approximation involving Euler and Poisson summation formulas, inverse problems reflecting the multivariate antenna problem, and aspects of analytic and geometric number theory. Features: New convergence criteria for alternating series in multi-dimensional analysis Self-contained development of lattice point identities of analytic number theory Innovative lattice point approach to Shannon sampling theory Useful for students of multivariate constructive approximation, and indeed anyone interested in the applicability of signal processing to inverse problems.
This book is of interest to mathematicians and computer scientists working in finite mathematics and combinatorics. It presents a breakthrough method for analyzing complex summations. Beautifully written, the book contains practical applications as well as conceptual developments that will have applications in other areas of mathematics. From the table of contents: * Proof Machines * Tightening the Target * The Hypergeometric Database * The Five Basic Algorithms: Sister Celine's Method, Gosper&'s Algorithm, Zeilberger's Algorithm, The WZ Phenomenon, Algorithm Hyper * Epilogue: An Operator Algebra Viewpoint * The WWW Sites and the Software (Maple and Mathematica) Each chapter contains an introduction to the subject and ends with a set of exercises.
This volume presents a systematic and unified treatment of Leray-Schauder continuation theorems in nonlinear analysis. In particular, fixed point theory is established for many classes of maps, such as contractive, non-expansive, accretive, and compact maps, to name but a few. This book also presents coincidence and multiplicity results. Many applications of current interest in the theory of nonlinear differential equations are presented to complement the theory. The text is essentially self-contained, so it may also be used as an introduction to topological methods in nonlinear analysis. This volume will appeal to graduate students and researchers in mathematical analysis and its applications.
Non-Linear Differential Equations and Dynamical Systems is the second book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This second book consists of two chapters (chapters 3 and 4 of the set). The first chapter considers non-linear differential equations of first order, including variable coefficients. A first-order differential equation is equivalent to a first-order differential in two variables. The differentials of order higher than the first and with more than two variables are also considered. The applications include the representation of vector fields by potentials. The second chapter in the book starts with linear oscillators with coefficients varying with time, including parametric resonance. It proceeds to non-linear oscillators including non-linear resonance, amplitude jumps, and hysteresis. The non-linear restoring and friction forces also apply to electromechanical dynamos. These are examples of dynamical systems with bifurcations that may lead to chaotic motions. Presents general first-order differential equations including non-linear like the Ricatti equation Discusses differentials of the first or higher order in two or more variables Includes discretization of differential equations as finite difference equations Describes parametric resonance of linear time dependent oscillators specified by the Mathieu functions and other methods Examines non-linear oscillations and damping of dynamical systems including bifurcations and chaotic motions
Higher-Order Differential Equations and Elasticity is the third book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This third book consists of two chapters (chapters 5 and 6 of the set). The first chapter in this book concerns non-linear differential equations of the second and higher orders. It also considers special differential equations with solutions like envelopes not included in the general integral. The methods presented include special differential equations, whose solutions include the general integral and special integrals not included in the general integral for myriad constants of integration. The methods presented include dual variables and differentials, related by Legendre transforms, that have application in thermodynamics. The second chapter concerns deformations of one (two) dimensional elastic bodies that are specified by differential equations of: (i) the second-order for non-stiff bodies like elastic strings (membranes); (ii) fourth-order for stiff bodies like bars and beams (plates). The differential equations are linear for small deformations and gradients and non-linear otherwise. The deformations for beams include bending by transverse loads and buckling by axial loads. Buckling and bending couple non-linearly for plates. The deformations depend on material properties, for example isotropic or anisotropic elastic plates, with intermediate cases such as orthotropic or pseudo-isotropic. Discusses differential equations having special integrals not contained in the general integral, like the envelope of a family of integral curves Presents differential equations of the second and higher order, including non-linear and with variable coefficients Compares relation of differentials with the principles of thermodynamics Describes deformations of non-stiff elastic bodies like strings and membranes and buckling of stiff elastic bodies like bars, beams, and plates Presents linear and non-linear waves in elastic strings, membranes, bars, beams, and plates
Simultaneous Differential Equations and Multi-Dimensional Vibrations is the fourth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fourth book consists of two chapters (chapters 7 and 8 of the set). The first chapter concerns simultaneous systems of ordinary differential equations and focuses mostly on the cases that have a matrix of characteristic polynomials, namely linear systems with constant or homogeneous power coefficients. The method of the matrix of characteristic polynomials also applies to simultaneous systems of linear finite difference equations with constant coefficients. The second chapter considers linear multi-dimensional oscillators with any number of degrees of freedom including damping, forcing, and multiple resonance. The discrete oscillators may be extended from a finite number of degrees-of-freedom to infinite chains. The continuous oscillators correspond to waves in homogeneous or inhomogeneous media, including elastic, acoustic, electromagnetic, and water surface waves. The combination of propagation and dissipation leads to the equations of mathematical physics. Presents simultaneous systems of ordinary differential equations and their elimination for a single ordinary differential equation Includes cases with a matrix of characteristic polynomials, including simultaneous systems of linear differential and finite difference equations with constant coefficients Covers multi-dimensional oscillators with damping and forcing, including modal decomposition, natural frequencies and coordinates, and multiple resonance Discusses waves in inhomogeneous media, such as elastic, electromagnetic, acoustic, and water waves Includes solutions of partial differential equations of mathematical physics by separation of variables leading to ordinary differential equations
Singular Differential Equations and Special Functions is the fifth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fifth book consists of one chapter (chapter 9 of the set). The chapter starts with general classes of differential equations and simultaneous systems for which the properties of the solutions can be established 'a priori', such as existence and unicity of solution, robustness and uniformity with regard to changes in boundary conditions and parameters, and stability and asymptotic behavior. The book proceeds to consider the most important class of linear differential equations with variable coefficients, that can be analytic functions or have regular or irregular singularities. The solution of singular differential equations by means of (i) power series; (ii) parametric integral transforms; and (iii) continued fractions lead to more than 20 special functions; among these is given greater attention to generalized circular, hyperbolic, Airy, Bessel and hypergeometric differential equations, and the special functions that specify their solutions. Includes existence, unicity, robustness, uniformity, and other theorems for non-linear differential equations Discusses properties of dynamical systems derived from the differential equations describing them, using methods such as Liapunov functions Includes linear differential equations with periodic coefficients, including Floquet theory, Hill infinite determinants and multiple parametric resonance Details theory of the generalized Bessel differential equation, and of the generalized, Gaussian, confluent and extended hypergeometric functions and relations with other 20 special functions Examines Linear Differential Equations with analytic coefficients or regular or irregular singularities, and solutions via power series, parametric integral transforms, and continued fractions
What do proteins and pop-up cards have in common? How is opening a grocery bag different from opening a gift box? How can you cut out the letters for a whole word all at once with one straight scissors cut? How many ways are there to flatten a cube? You can answer these questions and more through the mathematics of folding and unfolding. From this book, you will discover new and old mathematical theorems by folding paper and find out how to reason toward proofs. With the help of 200 color figures, author Joseph O'Rourke explains these fascinating folding problems starting from high school algebra and geometry and introducing more advanced concepts in tangible contexts as they arise. He shows how variations on these basic problems lead directly to the frontiers of current mathematical research and offers ten accessible unsolved problems for the enterprising reader. Before tackling these, you can test your skills on fifty exercises with complete solutions. The book's Web site, http: //www.howtofoldit.org, has dynamic animations of many of the foldings and downloadable templates for readers to fold or cut out.
Boost your chances of scoring higher at Algebra II Algebra II introduces students to complex algebra concepts in preparation for trigonometry and calculus. In this new edition of Algebra II Workbook For Dummies, high school and college students will work through the types of Algebra II problems they'll see in class, including systems of equations, matrices, graphs, and conic sections. Plus, the book now comes with free 1-year access to chapter quizzes online! A recent report by ACT shows that over a quarter of ACT-tested 2012 high school graduates did not meet any of the four college readiness benchmarks in mathematics, English, reading, and science. Algebra II Workbook For Dummies presents tricky topics in plain English and short lessons, with examples and practice at every step to help students master the essentials, setting them up for success with each new lesson. Tracks to a typical Algebra II class Can be used as a supplement to classroom learning or for test prep Includes plenty of practice and examples throughout Comes with free access to chapter quizzes online Get ready to take the intimidation out of Algebra II!
A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.
We study embeddings of PSL2(pa) into exceptional groups G(pb)forG = F4,E6,2E6,E7,andp aprimewitha,b positive integers. With a few possible exceptions, we prove that any almost simple group with socle PSL2(pa), that is maximal inside an almost simple exceptional group of Lie type F4, E6, 2E6 and E7, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type A1 inside the algebraic group. Together with a recent result of Burness and Testerman for p the Coxeter number plus one, this proves that all maximal subgroups with socle PSL2(pa) inside these finite almost simple groups are known, with three possible exceptions (pa = 7, 8,25 for E7). In the three remaining cases we provide considerable information about a potential maximal subgroup.
A large portion of the book can be used as a textbook for graduate and upper level undergraduate students in mathematics, communication engineering, computer science and other fields. The remaining part can be used as references for specialists. Explicit construction and computation of finite fields are emphasized. In particular, the construction of irreducible polynomials and normal basis of finite field is included. A detailed treatment of optimal normal basis and Galoi's rings is included. It is the first time that the galois rings are in book form.
Coverage of matrix algebra for economists and students of economics Matrix Algebra for Applied Economics explains the important tool of matrix algebra for students of economics and practicing economists. It includes examples that demonstrate the foundation operations of matrix algebra and illustrations of using the algebra for a variety of economic problems. The authors present the scope and basic definitions of matrices, their arithmetic and simple operations, and describe special matrices and their properties, including the analog of division. They provide in-depth coverage of necessary theory and deal with concepts and operations for using matrices in real-life situations. They discuss linear dependence and independence, as well as rank, canonical forms, generalized inverses, eigenroots, and vectors. Topics of prime interest to economists are shown to be simplified using matrix algebra in linear equations, regression, linear models, linear programming, and Markov chains. Highlights include:
Matrix Algebra for Applied Economics provides excellent guidance for advanced undergraduate students and also graduate students. Practicing economists who want to sharpen their skills will find this book both practical and easy-to-read, no matter what their applied interests.
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature. |
![]() ![]() You may like...
Recent Developments in the Numerics of…
Rainer Ansorge, Hester Bijl, …
Hardcover
R5,622
Discovery Miles 56 220
Mathematics and Computing - ICMC 2018…
Debdas Ghosh, Debasis Giri, …
Hardcover
R2,960
Discovery Miles 29 600
|