![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
A remarkable interplay exists between the fields of elliptic functions and orthogonal polynomials. In the first monograph to explore their connections, Elliptic Polynomials combines these two areas of study, leading to an interesting development of some basic aspects of each. It presents new material about various classes of polynomials and about the odd Jacobi elliptic functions and their inverses.
This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.
Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP(2). Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others. The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book's second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert's sixteenth problem. The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics. Features: Examines how the shape of pencils depends on the corresponding configurations of points Includes topology of real algebraic curves Contains numerous applications and results around Hilbert's sixteenth problem About the Author: Severine Fiedler-le Touze has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.
This book focuses on recent developments in the theory of vertex algebras, with particular emphasis on affine vertex algebras, affine W-algebras, and W-algebras appearing in physical theories such as logarithmic conformal field theory. It is widely accepted in the mathematical community that the best way to study the representation theory of affine Kac-Moody algebras is by investigating the representation theory of the associated affine vertex and W-algebras. In this volume, this general idea can be seen at work from several points of view. Most relevant state of the art topics are covered, including fusion, relationships with finite dimensional Lie theory, permutation orbifolds, higher Zhu algebras, connections with combinatorics, and mathematical physics. The volume is based on the INdAM Workshop Affine, Vertex and W-algebras, held in Rome from 11 to 15 December 2017. It will be of interest to all researchers in the field.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest.
Over the last thirty years, the subject of nonlinear integrable systems has grown into a full-fledged research topic. In the last decade, Lie algebraic methods have grown in importance to various fields of theoretical research and worked to establish close relations between apparently unrelated systems. The various ideas associated with Lie algebra and Lie groups can be used to form a particularly elegant approach to the properties of nonlinear systems. In this volume, the author exposes the basic techniques of using Lie algebraic concepts to explore the domain of nonlinear integrable systems. His emphasis is not on developing a rigorous mathematical basis, but on using Lie algebraic methods as an effective tool. The book begins by establishing a practical basis in Lie algebra, including discussions of structure Lie, loop, and Virasor groups, quantum tori and Kac-Moody algebras, and gradation. It then offers a detailed discussion of prolongation structure and its representation theory, the orbit approach-for both finite and infinite dimension Lie algebra. The author also presents the modern approach to symmetries of integrable systems, including important new ideas in symmetry analysis, such as gauge transformations, and the "soldering" approach. He then moves to Hamiltonian structure, where he presents the Drinfeld-Sokolov approach, the Lie algebraic approach, Kupershmidt's approach, Hamiltonian reductions and the Gelfand Dikii formula. He concludes his treatment of Lie algebraic methods with a discussion of the classical r-matrix, its use, and its relations to double Lie algebra and the KP equation.
"Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
The feedback control of nonlinear differential and algebraic equation systems (DAEs) is a relatively new subject. Developing steadily over the last few years, it has generated growing interest inspired by its engineering applications and by advances in the feedback control of nonlinear ordinary differential equations (ODEs). This book-the first of its kind-introduces the reader to the inherent characteristics of nonlinear DAE systems and the methods used to address their control, then discusses the significance of DAE systems to the modeling and control of chemical processes. Within a unified framework, Control of Nonlinear Differential Algebraic Equation Systems presents recent results on the stabilization, output tracking, and disturbance elimination for a large class of nonlinear DAE systems.
On its original publication, this book provided the first elementary treatment of representation theory of finite groups of Lie type in book form. This second edition features new material to reflect the continuous evolution of the subject, including entirely new chapters on Hecke algebras, Green functions and Lusztig families. The authors cover the basic theory of representations of finite groups of Lie type, such as linear, unitary, orthogonal and symplectic groups. They emphasise the Curtis-Alvis duality map and Mackey's theorem and the results that can be deduced from it, before moving on to a discussion of Deligne-Lusztig induction and Lusztig's Jordan decomposition theorem for characters. The book contains the background information needed to make it a useful resource for beginning graduate students in algebra as well as seasoned researchers. It includes exercises and explicit examples.
The second volume of this work contains Parts 2 and 3 of the "Handbook of Coding Theory". Part 2, "Connections", is devoted to connections between coding theory and other branches of mathematics and computer science. Part 3, "Applications", deals with a variety of applications for coding.
This volume lays down the foundations of a theory of rings based on finite maps. The purpose of the ring is entirely discussed in terms of the global properties of the one-turn map. Proposing a theory of rings based on such maps, this work offers another perspective on storage ring theory.
This second edition of Compact Numerical Methods for Computers presents reliable yet compact algorithms for computational problems. As in the previous edition, the author considers specific mathematical problems of wide applicability, develops approaches to a solution and the consequent algorithm, and provides the program steps. He emphasizes useful applicable methods from various scientific research fields, ranging from mathematical physics to commodity production modeling. While the ubiquitous personal computer is the particular focus, the methods have been implemented on computers as small as a programmable pocket calculator and as large as a highly parallel supercomputer. New to the Second Edition Presents program steps as Turbo Pascal code Includes more algorithmic examples Contains an extended bibliography The accompanying software (available by coupon at no charge) includes not only the algorithm source codes, but also driver programs, example data, and several utility codes to help in the software engineering of end-user programs. The codes are designed for rapid implementation and reliable use in a wide variety of computing environments. Scientists, statisticians, engineers, and economists who prepare/modify programs for use in their work will find this resource invaluable. Moreover, since little previous training in numerical analysis is required, the book can also be used as a supplementary text for courses on numerical methods and mathematical software.
Clear prose, tight organization, and a wealth of examples and computational techniques make Basic Matrix Algebra with Algorithms and Applications an outstanding introduction to linear algebra. The author designed this treatment specifically for freshman majors in mathematical subjects and upper-level students in natural resources, the social sciences, business, or any discipline that eventually requires an understanding of linear models. With extreme pedagogical clarity that avoids abstraction wherever possible, the author emphasizes minimal polynomials and their computation using a Krylov algorithm. The presentation is highly visual and relies heavily on work with a graphing calculator to allow readers to focus on concepts and techniques rather than on tedious arithmetic. Supporting materials, including test preparation Maple worksheets, are available for download from the Internet. This unassuming but insightful and remarkably original treatment is organized into bite-sized, clearly stated objectives. It goes well beyond the LACSG recommendations for a first course while still implementing their philosophy and core material. Classroom tested with great success, it prepares readers well for the more advanced studies their fields ultimately will require.
This is an examination of number theory as it emerged in the 17th through to the 19th century, leading to an understanding of today's research problems on the basis of their historical evolution. The book introduces the reader to the mathematicians Fermat, Euler, Lagrange, Legendre and Gauss. It goes on to tackle advanced themes in this field, often dubbed the queen of mathematics.
Giving an easily accessible elementary introduction to the
algebraic theory of quadratic forms, this book covers both Witt's
theory and Pfister's theory of quadratic forms.
There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. The text concentrates on the study of binary forms (polynomials) in characteristic zero, and uses analytical as well as algebraic tools to study and classify invariants, symmetry, equivalence and canonical forms. A variety of innovations make this text of interest even to veterans of the subject; these include the use of differential operators and the transform approach to the symbolic method, extension of results to arbitrary functions, graphical methods for computing identities and Hilbert bases, complete systems of rationally and functionally independent covariants, introduction of Lie group and Lie algebra methods, as well as a new geometrical theory of moving frames and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition.
For courses in Basic Mathematics. Trusted author content. Thoughtful innovation. Math hasn't changed, but students - and the way they learn - have. In this revision of the Bittinger Worktext Series, the Bittinger author team brings their extensive experience to developmental math courses, paired with thoughtful integration of technology and content. The Bittinger Series enables students to get the most out of their course through their updated learning path, and new engaging exercises to support various types of student learning. Bittinger offers respected content written by author-educators, tightly integrated with MyLab (TM) Math - the #1 choice in digital learning. Bringing the authors' voices and their approach into the MyLab course gives students the motivation, engagement, and skill sets they need to master algebra. Also available with MyLab Math MyLab (TM) is the teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134697456 / 9780134697451 Basic College Mathematics Plus NEW MyLab Math with Pearson eText - Access Card Package, 13/e Package consists of: 0134689623 / 9780134689623 Basic College Mathematics 0135115604 / 9780135115602 MyLab Math with Pearson eText - Standalone Access Card - for Basic College Mathematics
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern's bound and Trepreau's algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
Multivariable Mathematics combines linear algebra and multivariable
mathematics in a rigorous approach. The material is integrated to
emphasize the recurring theme of implicit versus explicit that
persists in linear algebra and analysis. In the text, the author
includes all of the standard computational material found in the
usual linear algebra and multivariable calculus courses, and more,
interweaving the material as effectively as possible, and also
includes complete proofs.
For courses in Intermediate Algebra. Trusted author content. Thoughtful innovation. Math hasn't changed, but students - and the way they learn - have. In this revision of the Bittinger Worktext Series, the Bittinger author team brings their extensive experience to developmental math courses, paired with thoughtful integration of technology and content. The Bittinger Series enables students to get the most out of their course through their updated learning path, and new engaging exercises to support various types of student learning. Bittinger offers respected content written by author-educators, tightly integrated with MyLab (TM) Math - the #1 choice in digital learning. Bringing the authors' voices and their approach into the MyLab course gives students the motivation, engagement, and skill sets they need to master algebra. Also available with MyLab Math MyLab (TM) is the teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134679385 / 9780134679389 Intermediate Algebra Plus NEW MyLab Math with Pearson eText - Access Card Package Package consists of: 0134707362 / 9780134707365 Intermediate Algebra 013511571X / 9780135115718 MyLab Math - Standalone Access Card - for Intermediate Algebra
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
For courses in Prealgebra. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134674189 / 9780134674186 Prealgebra Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134707648 / 9780134707648 Prealgebra 0135115795 / 9780135115794 MyLab Math with Pearson eText - Standalone Access Card - for Prealgebra
For courses in Basic Mathematics. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135161401 / 9780135161401 Basic College Mathematics Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134840429 / 9780134840420 Basic College Mathematics 0135115787 / 9780135115787 MyLab Math with Pearson eText - Standalone Access Card - for Basic College Mathematics
This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Proceedings of the Lehigh County…
Lehigh County Historical Society 1n
Hardcover
R1,034
Discovery Miles 10 340
|