![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
This volume collects presentations from the international workshop on local cohomology held in Guanajuato, Mexico, including expanded lecture notes of two minicourses on applications in equivariant topology and foundations of duality theory, and chapters on finiteness properties, D-modules, monomial ideals, combinatorial analysis, and related topics. Featuring selected papers from renowned experts around the world, Local Cohomology and Its Applications is a provocative reference for algebraists, topologists, and upper-level undergraduate and graduate students in these disciplines.
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
This book takes an in-depth look at abelian relations of codimension one webs in the complex analytic setting. In its classical form, web geometry consists in the study of webs up to local diffeomorphisms. A significant part of the theory revolves around the concept of abelian relation, a particular kind of functional relation among the first integrals of the foliations of a web. Two main focuses of the book include how many abelian relations can a web carry and which webs are carrying the maximal possible number of abelian relations. The book offers complete proofs of both Chern's bound and Trepreau's algebraization theorem, including all the necessary prerequisites that go beyond elementary complex analysis or basic algebraic geometry. Most of the examples known up to date of non-algebraizable planar webs of maximal rank are discussed in detail. A historical account of the algebraization problem for maximal rank webs of codimension one is also presented.
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).
"Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s."
For courses in Basic Mathematics. Trusted author content. Thoughtful innovation. Math hasn't changed, but students - and the way they learn - have. In this revision of the Bittinger Worktext Series, the Bittinger author team brings their extensive experience to developmental math courses, paired with thoughtful integration of technology and content. The Bittinger Series enables students to get the most out of their course through their updated learning path, and new engaging exercises to support various types of student learning. Bittinger offers respected content written by author-educators, tightly integrated with MyLab (TM) Math - the #1 choice in digital learning. Bringing the authors' voices and their approach into the MyLab course gives students the motivation, engagement, and skill sets they need to master algebra. Also available with MyLab Math MyLab (TM) is the teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134697456 / 9780134697451 Basic College Mathematics Plus NEW MyLab Math with Pearson eText - Access Card Package, 13/e Package consists of: 0134689623 / 9780134689623 Basic College Mathematics 0135115604 / 9780135115602 MyLab Math with Pearson eText - Standalone Access Card - for Basic College Mathematics
This text contains more than 2000 exercises in algebra. These exercises are currently used in teaching a fundamental course in algebra in the Department of Mechanics and Mathematics at Moscow State University. The text is divided into three parts, which correspond to three semesters of study. Each section contains not only standard exercises, but also more difficult exercises at the end of some sections, these more challenging exercises being marked with asterisks. At the end of the book, results of calculations, a list of notations and basic definitions are given.
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Renewed interest in vector spaces and linear algebras has spurred the search for large algebraic structures composed of mathematical objects with special properties. Bringing together research that was otherwise scattered throughout the literature, Lineability: The Search for Linearity in Mathematics collects the main results on the conditions for the existence of large algebraic substructures. It investigates lineability issues in a variety of areas, including real and complex analysis. After presenting basic concepts about the existence of linear structures, the book discusses lineability properties of families of functions defined on a subset of the real line as well as the lineability of special families of holomorphic (or analytic) functions defined on some domain of the complex plane. It next focuses on spaces of sequences and spaces of integrable functions before covering the phenomenon of universality from an algebraic point of view. The authors then describe the linear structure of the set of zeros of a polynomial defined on a real or complex Banach space and explore specialized topics, such as the lineability of various families of vectors. The book concludes with an account of general techniques for discovering lineability in its diverse degrees.
Monomial Algebras, Second Edition presents algebraic, combinatorial, and computational methods for studying monomial algebras and their ideals, including Stanley-Reisner rings, monomial subrings, Ehrhart rings, and blowup algebras. It emphasizes square-free monomials and the corresponding graphs, clutters, or hypergraphs. New to the Second Edition Four new chapters that focus on the algebraic properties of blowup algebras in combinatorial optimization problems of clutters and hypergraphs Two new chapters that explore the algebraic and combinatorial properties of the edge ideal of clutters and hypergraphs Full revisions of existing chapters to provide an up-to-date account of the subject Bringing together several areas of pure and applied mathematics, this book shows how monomial algebras are related to polyhedral geometry, combinatorial optimization, and combinatorics of hypergraphs. It directly links the algebraic properties of monomial algebras to combinatorial structures (such as simplicial complexes, posets, digraphs, graphs, and clutters) and linear optimization problems.
This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.
Although there are many types of ring extensions, simple extensions have yet to be thoroughly explored in one book. Covering an understudied aspect of commutative algebra, Simple Extensions with the Minimum Degree Relations of Integral Domains presents a comprehensive treatment of various simple extensions and their properties. In particular, it examines several properties of simple ring extensions of Noetherian integral domains. As experts who have been studying this field for over a decade, the authors present many arguments that they have developed themselves, mainly exploring anti-integral, super-primitive, and ultra-primitive extensions. Within this framework, they study certain properties, such as flatness, integrality, and unramifiedness. Some of the topics discussed include Sharma polynomials, vanishing points, Noetherian domains, denominator ideals, unit groups, and polynomial rings. Presenting a complete treatment of each topic, Simple Extensions with the Minimum Degree Relations of Integral Domains serves as an ideal resource for graduate students and researchers involved in the area of commutative algebra.
This book is a collection of research papers and surveys on algebra that were presented at the Conference on Groups, Rings, and Group Rings held in Ubatuba, Brazil. This text familiarizes researchers with the latest topics, techniques, and methodologies in several branches of contemporary algebra. With extensive coverage, it examines broad themes from group theory and ring theory, exploring their relationship with other branches of algebra including actions of Hopf algebras, groups of units of group rings, combinatorics of Young diagrams, polynomial identities, growth of algebras, and more. Featuring international contributions, this book is ideal for mathematicians specializing in these areas.
This new book contains the most up-to-date and focused description
of the applications of Clifford algebras in analysis, particularly
classical harmonic analysis. It is the first single volume devoted
to applications of Clifford analysis to other aspects of
analysis.
For courses in Intermediate Algebra. Trusted author content. Thoughtful innovation. Math hasn't changed, but students - and the way they learn - have. In this revision of the Bittinger Worktext Series, the Bittinger author team brings their extensive experience to developmental math courses, paired with thoughtful integration of technology and content. The Bittinger Series enables students to get the most out of their course through their updated learning path, and new engaging exercises to support various types of student learning. Bittinger offers respected content written by author-educators, tightly integrated with MyLab (TM) Math - the #1 choice in digital learning. Bringing the authors' voices and their approach into the MyLab course gives students the motivation, engagement, and skill sets they need to master algebra. Also available with MyLab Math MyLab (TM) is the teaching and learning platform that empowers instructors to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134679385 / 9780134679389 Intermediate Algebra Plus NEW MyLab Math with Pearson eText - Access Card Package Package consists of: 0134707362 / 9780134707365 Intermediate Algebra 013511571X / 9780135115718 MyLab Math - Standalone Access Card - for Intermediate Algebra
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
About the book In honor of Edgar Enochs and his venerable contributions to a broad range of topics in Algebra, top researchers from around the world gathered at Auburn University to report on their latest work and exchange ideas on some of today's foremost research topics. This carefully edited volume presents the refereed papers of the participants of these talks along with contributions from other veteran researchers who were unable to attend. These papers reflect many of the current topics in Abelian Groups, Commutative Algebra, Commutative Rings, Group Theory, Homological Algebra, Lie Algebras, and Module Theory. Accessible even to beginning mathematicians, many of these articles suggest problems and programs for future study. This volume is an outstanding addition to the literature and a valuable handbook for beginning as well as seasoned researchers in Algebra. about the editors H. PAT GOETERS completed his undergraduate studies in mathematics and computer science at Southern Connecticut State University and received his Ph.D. in 1984 from the University of Connecticut under the supervision of William J. Wickless. After spending one year in a post-doctoral position in Wesleyan University under the tutelage of James D. Reid, Goeters was invited for a tenure track position in Auburn University by Ulrich F. Albrecht. Soon afterwards, William Ullery and Overtoun Jenda were hired, and so began a lively Algebra group. OVERTOUN M. G. JENDA received his bachelor's degree in Mathematics from Chancellor College, the University of Malawi. He moved to the U.S. 1977 to pursue graduate studies at University of Kentucky, earning his Ph.D. in 1981 under the supervision of Professor Edgar Enochs. He then returned to Chancellor College, where he was a lecturer (assistant professor) for three years. He moved to the University of Botswana for another three-year stint as a lecturer before moving back to the University of Kentucky as a visi
The major purpose of this book is to present the theoretical ideas and the analytical and numerical methods to enable the reader to understand and efficiently solve these important optimizational problems.The first half of this book should serve as the major component of a classical one or two semester course in the calculus of variations and optimal control theory. The second half of the book will describe the current research of the authors which is directed to solving these problems numerically. In particular, we present new reformulations of constrained problems which leads to unconstrained problems in the calculus of variations and new general, accurate and efficient numerical methods to solve the reformulated problems. We believe that these new methods will allow the reader to solve important problems.
Essentially there are two variational theories of liquid crystals explained in this book. The theory put forward by Zocher, Oseen and Frank is classical, while that proposed by Ericksen is newer in its mathematical formulation although it has been postulated in the physical literature for the past two decades. The newer theory provides a better explanation of defects in liquid crystals, especially of those concentrated on lines and surfaces, which escape the scope of the classical theory. The book opens the way to the wealth of applications that will follow.
Elementary Linear Algebra is written for the first undergraduate course. The book focuses on the importance of linear algebra in many disciplines such as engineering, economics, statistics, and computer science. The text reinforces critical ideas and lessons of traditional topics. More importantly, the book is written in a manner that deeply ingrains computational methods.
For courses in Prealgebra. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134674189 / 9780134674186 Prealgebra Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134707648 / 9780134707648 Prealgebra 0135115795 / 9780135115794 MyLab Math with Pearson eText - Standalone Access Card - for Prealgebra
For courses in Basic Mathematics. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0135161401 / 9780135161401 Basic College Mathematics Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134840429 / 9780134840420 Basic College Mathematics 0135115787 / 9780135115787 MyLab Math with Pearson eText - Standalone Access Card - for Basic College Mathematics
Decomposing an abelian group into a direct sum of its subsets leads to results that can be applied to a variety of areas, such as number theory, geometry of tilings, coding theory, cryptography, graph theory, and Fourier analysis. Focusing mainly on cyclic groups, Factoring Groups into Subsets explores the factorization theory of abelian groups. The book first shows how to construct new factorizations from old ones. The authors then discuss nonperiodic and periodic factorizations, quasiperiodicity, and the factoring of periodic subsets. They also examine how tiling plays an important role in number theory. The next several chapters cover factorizations of infinite abelian groups; combinatorics, such as Ramsey numbers, Latin squares, and complex Hadamard matrices; and connections with codes, including variable length codes, error correcting codes, and integer codes. The final chapter deals with several classical problems of Fuchs. Encompassing many of the main areas of the factorization theory, this book explores problems in which the underlying factored group is cyclic.
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences. This book covers material such as Jordan superalgebras, nonassociative deformations, nonassociative generalization of Hopf algebras, the structure of free algebras, derivations of Lie algebras, and the identities of Albert algebra. It also includes applications of smooth quasigroups and loops to differential geometry and relativity. |
![]() ![]() You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,110
Discovery Miles 11 100
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
R2,492
Discovery Miles 24 920
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Theory and Applications of Ordered Fuzzy…
Piotr Prokopowicz, Jacek Czerniak, …
Hardcover
R1,618
Discovery Miles 16 180
|