![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Vector algebra is a particularly weak point in undergraduate mathematics but seminal to understanding more advanced algebra topics. The book is meant as a primary book but might also be used as a supplement to courses in linear algebra and multivariable or vector calculus. There are no direct, current competitors at this level (undergraduate)
This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois representations. One of the outstanding problems in arithmetic is a generalization of class field theory to non-abelian Galois extension of number fields. In this volume, we discuss some relations between this problem and cusp forms of weight 1.
This second edition covers essentially the same topics as the first. However, the presentation of the material has been extensively revised and improved. In addition, there are two new chapters, one dealing with the fundamental theorem of finitely generated abelian groups and the other a brief introduction to semigroup theory and automata.This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes, and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space, semigroups and automata. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects to be relatively painless.In this book, cosets, factor objects and homomorphisms are introduced early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible.
This second edition covers essentially the same topics as the first. However, the presentation of the material has been extensively revised and improved. In addition, there are two new chapters, one dealing with the fundamental theorem of finitely generated abelian groups and the other a brief introduction to semigroup theory and automata.This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes, and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space, semigroups and automata. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects to be relatively painless.In this book, cosets, factor objects and homomorphisms are introduced early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible.
The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.
A First Course in Linear Algebra is written by two experts from algebra who have more than 20 years of experience in algebra, linear algebra and number theory. It prepares students with no background in Linear Algebra. Students, after mastering the materials in this textbook, can already understand any Linear Algebra used in more advanced books and research papers in Mathematics or in other scientific disciplines.This book provides a solid foundation for the theory dealing with finite dimensional vector spaces. It explains in details the relation between linear transformations and matrices. One may thus use different viewpoints to manipulate a matrix instead of a one-sided approach. Although most of the examples are for real and complex matrices, a vector space over a general field is briefly discussed. Several optional sections are devoted to applications to demonstrate the power of Linear Algebra.
A First Course in Linear Algebra is written by two experts from algebra who have more than 20 years of experience in algebra, linear algebra and number theory. It prepares students with no background in Linear Algebra. Students, after mastering the materials in this textbook, can already understand any Linear Algebra used in more advanced books and research papers in Mathematics or in other scientific disciplines.This book provides a solid foundation for the theory dealing with finite dimensional vector spaces. It explains in details the relation between linear transformations and matrices. One may thus use different viewpoints to manipulate a matrix instead of a one-sided approach. Although most of the examples are for real and complex matrices, a vector space over a general field is briefly discussed. Several optional sections are devoted to applications to demonstrate the power of Linear Algebra.
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov-Arnold-Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert-Arnold problem for the number of zeros of abelian integrals, Arnold's inequality, comparison, and complexification method in real algebraic geometry, Arnold-Kolmogorov solution of Hilbert's 13th problem, Arnold's spectral sequence in singularity theory, Arnold diffusion, The Euler-Poincare-Arnold equations for geodesics on Lie groups, Arnold's stability criterion in hydrodynamics, ABC (Arnold-Beltrami-Childress) ?ows in ?uid dynamics, The Arnold-Korkina dynamo, Arnold's cat map, The Arnold-Liouville theorem in integrable systems, Arnold's continued fractions, Arnold's interpretation of the Maslov index, Arnold's relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan-Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold's books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world.
The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).
The volume is a collection of 20 refereed articles written in connection with lectures presented at the 12th International Conference on Finite Fields and Their Applications ('Fq12') at Skidmore College in Saratoga Springs, NY in July 2015. Finite fields are central to modern cryptography and secure digital communication, and hence must evolve rapidly to keep pace with new technologies. Topics in this volume include cryptography, coding theory, structure of finite fields, algorithms, curves over finite fields, and further applications.Contributors will include: Antoine Joux (Fondation Partenariale de l'UPMC, France); Gary Mullen (Penn State University, USA); Gohar Kyureghyan (Otto-von-Guericke Universitat, Germany); Gary McGuire (University College Dublin, Ireland); Michel Lavrauw (Universita degli Studi di Padova, Italy); Kirsten Eisentraeger (Penn State University, USA); Renate Scheidler (University of Calgary, Canada); Michael Zieve (University of Michigan, USA).
This is the first book that focuses on practical algorithms for polynomial inequality proving and discovering. It is a summary of the work by the authors and their collaborators on automated inequality proving and discovering in recent years. Besides brief introduction to some classical results and related work in corresponding chapters, the book mainly focuses on the algorithms initiated by the authors and their collaborators, such as real root counting, real root classification, improved CAD projection, dimension-decreasing algorithm, difference substitution, and so on. All the algorithms were rigorously proved and the implementations are demonstrated by lots of examples in various backgrounds such as algebra, geometry, biological science, and computer science.See Press Release: A collection of practical algorithms for polynomial inequality proving and discovering
Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.
Frobenius made many important contributions to mathematics in the latter part of the 19th century. Hawkins here focuses on his work in linear algebra and its relationship with the work of Burnside, Cartan, and Molien, and its extension by Schur and Brauer. He also discusses the Berlin school of mathematics and the guiding force of Weierstrass in that school, as well as the fundamental work of d'Alembert, Lagrange, and Laplace, and of Gauss, Eisenstein and Cayley that laid the groundwork for Frobenius's work in linear algebra. The book concludes with a discussion of Frobenius's contribution to the theory of stochastic matrices.
The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers."
This is a book of exercises in Linear Algebra. Through a systematic detailed discussion of 200 solved exercises, important concepts and topics are reviewed. The student is led to make a systematic review of topics from the basics to more advanced material, with emphasis on points that often cause the greatest difficulties. The solved exercises are followed by an additional 200 proposed exercises (with answers), thus guiding the student to a systematic consolidation of all topics.The contents follow closely the majority of the introductory courses of Linear Algebra. We consider in particular systems of linear equations, matrices, determinants, vector spaces, linear transformations, inner products, norms, eigenvalues and eigenvectors. The variety of exercises allows the adjustment to different levels in each topic.
This is a book of exercises in Linear Algebra. Through a systematic detailed discussion of 200 solved exercises, important concepts and topics are reviewed. The student is led to make a systematic review of topics from the basics to more advanced material, with emphasis on points that often cause the greatest difficulties. The solved exercises are followed by an additional 200 proposed exercises (with answers), thus guiding the student to a systematic consolidation of all topics.The contents follow closely the majority of the introductory courses of Linear Algebra. We consider in particular systems of linear equations, matrices, determinants, vector spaces, linear transformations, inner products, norms, eigenvalues and eigenvectors. The variety of exercises allows the adjustment to different levels in each topic.
This volume is based on lectures on division algebras given at a conference held at Colorado State University. Although division algebras are a very classical object, this book presents this ""classical"" material in a new way, highlighting current approaches and new theorems, and illuminating the connections with a variety of areas in mathematics.
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups. This new edition of a widely adopted textbook covers applications from biology, science, and engineering. It offers numerous updates based on feedback from first edition adopters, as well as improved and simplified proofs of a number of important theorems. Many new exercises have been added, while new study projects examine skewfields, quaternions, and octonions. The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. These three chapters provide a quick introduction to algebra, sufficient to exhibit irrational numbers or to gain a taste of cryptography. Chapters four through seven cover abstract groups and monoids, orthogonal groups, stochastic matrices, Lagrange's theorem, groups of units of monoids, homomorphisms, rings, and integral domains. The first seven chapters provide basic coverage of abstract algebra, suitable for a one-semester or two-quarter course. Each chapter includes exercises of varying levels of difficulty, chapter notes that point out variations in notation and approach, and study projects that cover an array of applications and developments of the theory. The final chapters deal with slightly more advanced topics, suitable for a second-semester or third-quarter course. These chapters delve deeper into the theory of rings, fields, and groups. They discuss modules, including vector spaces and abelian groups, group theory, and quasigroups. This textbook is suitable for use in an undergraduate course on abstract algebra for mathematics, computer science, and education majors, along with students from other STEM fields.
The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors' experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida's CLAST exam or similar core requirements.
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.
The purpose of this book is to provide a concise yet detailed account of fundamental concepts in modern algebra. The target audience for this book is first-year graduate students in mathematics, though the first two chapters are probably accessible to well-prepared undergraduates. The book covers a broad range of topics in modern algebra and includes chapters on groups, rings, modules, algebraic extension fields, and finite fields. Each chapter begins with an overview which provides a road map for the reader showing what material will be covered. At the end of each chapter we collect exercises which review and reinforce the material in the corresponding sections. These exercises range from straightforward applications of the material to problems designed to challenge the reader. We also include a list of 'Questions for Further Study' which pose problems suitable for master's degree research projects.
The purpose of this book is to provide a concise yet detailed account of fundamental concepts in modern algebra. The target audience for this book is first-year graduate students in mathematics, though the first two chapters are probably accessible to well-prepared undergraduates. The book covers a broad range of topics in modern algebra and includes chapters on groups, rings, modules, algebraic extension fields, and finite fields. Each chapter begins with an overview which provides a road map for the reader showing what material will be covered. At the end of each chapter we collect exercises which review and reinforce the material in the corresponding sections. These exercises range from straightforward applications of the material to problems designed to challenge the reader. We also include a list of 'Questions for Further Study' which pose problems suitable for master's degree research projects.
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises. |
You may like...
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
|