![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
Elementary Differential Equations, Second Edition is written with the knowledge that there has been a dramatic change in the past century in how solutions to differential equations are calculated. However, the way the topic has been taught in introductory courses has barely changed to reflect these advances, which leaves students at a disadvantage. This second edition has been created to address these changes and help instructors facilitate new teaching methods and the latest tools, which includes computers. The text is designed to help instructors who want to use computers in their classrooms. It accomplishes this by emphasizing and integrating computers in teaching elementary or ordinary differential equations. Many examples and exercises included in the text require the use of computer software to solve problems. It should be noted that since instructors use their own preferred software, this book has been written to be independent of any specific software package. Features: Focuses on numerical methods and computing to generate solutions Features extensive coverage of nonlinear differential equations and nonlinear systems Includes software programs to solve problems in the text which are located on the author's website Contains a wider variety of non-mathematical models than any competing textbook This second edition is a valuable, up-to-date tool for instructors teaching courses about differential equations. It serves as an excellent introductory textbook for undergraduate students majoring in applied mathematics, computer science, various engineering disciplines and other sciences. They also will find that the textbook will aide them greatly in their professional careers because of its instructions on how to use computers to solve equations.
Elementary Linear Algebra is written for the first undergraduate course. The book focuses on the importance of linear algebra in many disciplines such as engineering, economics, statistics, and computer science. The text reinforces critical ideas and lessons of traditional topics. More importantly, the book is written in a manner that deeply ingrains computational methods.
Introduction to Radar Analysis, Second Edition is a major revision of the popular textbook. It is written within the context of communication theory as well as the theory of signals and noise. By emphasizing principles and fundamentals, the textbook serves as a vital source for students and engineers. Part I bridges the gap between communication, signal analysis, and radar. Topics include modulation techniques and associated Continuous Wave (CW) and pulsed radar systems. Part II is devoted to radar signal processing and pulse compression techniques. Part III presents special topics in radar systems including radar detection, radar clutter, target tracking, phased arrays, and Synthetic Aperture Radar (SAR). Many new exercise are included and the author provides comprehensive easy-to-follow mathematical derivations of all key equations and formulas. The author has worked extensively for the U.S. Army, the U.S. Space and Missile Command, and other military agencies. This is not just a textbook for senior level and graduates students, but a valuable tool for practicing radar engineers. Features Authored by a leading industry radar professional. Comprehensive up-to-date coverage of radar systems analysis issues. Easy to follow mathematical derivations of all equations and formulas Numerous graphical plots and table format outputs. One part of the book is dedicated to radar waveforms and radar signal processing.
Applied Differential Equations with Boundary Value Problems presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. This new edition of the author's popular textbook adds coverage of boundary value problems. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today's students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
A Course in Differential Equations with Boundary Value Problems, 2nd Edition adds additional content to the author's successful A Course on Ordinary Differential Equations, 2nd Edition. This text addresses the need when the course is expanded. The focus of the text is on applications and methods of solution, both analytical and numerical, with emphasis on methods used in the typical engineering, physics, or mathematics student's field of study. The text provides sufficient problems so that even the pure math major will be sufficiently challenged. The authors offer a very flexible text to meet a variety of approaches, including a traditional course on the topic. The text can be used in courses when partial differential equations replaces Laplace transforms. There is sufficient linear algebra in the text so that it can be used for a course that combines differential equations and linear algebra. Most significantly, computer labs are given in MATLAB (R), Mathematica (R), and Maple (TM). The book may be used for a course to introduce and equip the student with a knowledge of the given software. Sample course outlines are included. Features MATLAB (R), Mathematica (R), and Maple (TM) are incorporated at the end of each chapter. All three software packages have parallel code and exercises; There are numerous problems of varying difficulty for both the applied and pure math major, as well as problems for engineering, physical science and other students. An appendix that gives the reader a "crash course" in the three software packages. Chapter reviews at the end of each chapter to help the students review Projects at the end of each chapter that go into detail about certain topics and introduce new topics that the students are now ready to see Answers to most of the odd problems in the back of the book
This book provides an up-to-date overview of mathematical theories and research results in non-Newtonian fluid dynamics. Related mathematical models, solutions as well as numerical experiments are discussed. Fundamental theories and practical applications make it a handy reference for researchers and graduate students in mathematics, physics and engineering. Contents Non-Newtonian fluids and their mathematical model Global solutions to the equations of non-Newtonian fluids Global attractors of incompressible non-Newtonian fluids Global attractors of modified Boussinesq approximation Inertial manifolds of incompressible non-Newtonian fluids The regularity of solutions and related problems Global attractors and time-spatial chaos Non-Newtonian generalized fluid and their applications
Combinatory logic started as a programme in the foundation of mathematics and in an historical context at a time when such endeavours attracted the most gifted among the mathematicians. This small volume arose under quite differ ent circumstances, namely within the context of reworking the mathematical foundations of computer science. I have been very lucky in finding gifted students who agreed to work with me and chose, for their Ph. D. theses, subjects that arose from my own attempts 1 to create a coherent mathematical view of these foundations. The result of this collaborative work is presented here in the hope that it does justice to the individual contributor and that the reader has a chance of judging the work as a whole. E. Engeler ETH Zurich, April 1994 lCollected in Chapter III, An Algebraization of Algorithmics, in Algorithmic Properties of Structures, Selected Papers of Erwin Engeler, World Scientific PubJ. Co., Singapore, 1993, pp. 183-257. I Historical and Philosophical Background Erwin Engeler In the fall of 1928 a young American turned up at the Mathematical Institute of Gottingen, a mecca of mathematicians at the time; he was a young man with a dream and his name was H. B. Curry. He felt that he had the tools in hand with which to solve the problem of foundations of mathematics mice and for all. His was an approach that came to be called "formalist" and embodied that later became known as Combinatory Logic."
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
This comprehensive text shows how various notions of logic can be viewed as notions of universal algebra providing more advanced concepts for those who have an introductory knowledge of algebraic logic, as well as those wishing to delve into more theoretical aspects.
This is the first book of its kind which teaches matrix algebra, allowing the student to learn the material by actually working with matrix objects in modern computer environment of R. Instead of a calculator, R is a vastly more powerful free software and graphics system.The book provides a comprehensive overview of matrix theory without being bogged down in proofs or tedium. The reader can check each matrix result with numerical examples of exactly what they mean and understand their implications. The book does not shy away from advanced topics, especially the ones with practical applications.
This second edition of a successful graduate text provides a careful and detailed algebraic introduction to Grothendieck's local cohomology theory, including in multi-graded situations, and provides many illustrations of the theory in commutative algebra and in the geometry of quasi-affine and quasi-projective varieties. Topics covered include Serre's Affineness Criterion, the Lichtenbaum-Hartshorne Vanishing Theorem, Grothendieck's Finiteness Theorem and Faltings' Annihilator Theorem, local duality and canonical modules, the Fulton-Hansen Connectedness Theorem for projective varieties, and connections between local cohomology and both reductions of ideals and sheaf cohomology. The book is designed for graduate students who have some experience of basic commutative algebra and homological algebra and also experts in commutative algebra and algebraic geometry. Over 300 exercises are interspersed among the text; these range in difficulty from routine to challenging, and hints are provided for some of the more difficult ones.
This is a 2001 account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included.
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
Quadratic programming is a mathematical technique that allows for the optimization of a quadratic function in several variables. QP is a subset of Operations Research and is the next higher lever of sophistication than Linear Programming. It is a key mathematical tool in Portfolio Optimization and structural plasticity. This is useful in Civil Engineering as well as Statistics.
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Backlund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
Vector algebra is a particularly weak point in undergraduate mathematics but seminal to understanding more advanced algebra topics. The book is meant as a primary book but might also be used as a supplement to courses in linear algebra and multivariable or vector calculus. There are no direct, current competitors at this level (undergraduate)
The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents: Preface Sobolev Space and Preliminaries The Vanishing Viscosity Method of Some Nonlinear Evolution System The Vanishing Viscosity Method of Quasilinear Hyperbolic System Physical Viscosity and Viscosity of Difference Scheme Convergence of Lax-Friedrichs Scheme, Godunov Scheme and Glimm Scheme Electric-Magnetohydrodynamic Equations References
This book presents the main concepts of linear algebra from the viewpoint of applied scientists such as computer scientists and engineers, without compromising on mathematical rigor. Based on the idea that computational scientists and engineers need, in both research and professional life, an understanding of theoretical concepts of mathematics in order to be able to propose research advances and innovative solutions, every concept is thoroughly introduced and is accompanied by its informal interpretation. Furthermore, most of the theorems included are first rigorously proved and then shown in practice by a numerical example. When appropriate, topics are presented also by means of pseudocodes, thus highlighting the computer implementation of algebraic theory. It is structured to be accessible to everybody, from students of pure mathematics who are approaching algebra for the first time to researchers and graduate students in applied sciences who need a theoretical manual of algebra to successfully perform their research. Most importantly, this book is designed to be ideal for both theoretical and practical minds and to offer to both alternative and complementary perspectives to study and understand linear algebra.
Nonlinear Systems and Their Remarkable Mathematical Structures, Volume 2 is written in a careful pedagogical manner by experts from the field of nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). This book aims to clearly illustrate the mathematical theories of nonlinear systems and its progress to both non-experts and active researchers in this area. Just like the first volume, this book is suitable for graduate students in mathematics, applied mathematics and engineering sciences, as well as for researchers in the subject of differential equations and dynamical systems. Features Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-experts Suitable for a broad readership including researchers and graduate students in mathematics and applied mathematics
Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications. The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents and spectral analysis methods for statistical inference are all covered from a unique engineering perspective. Detailed mathematical derivations are presented throughout, with thorough explanation of the key results and all fundamental lemmas required for the reader to derive similar calculus on their own. These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks. The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results.
This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects in a more abstract setting to be relatively painless. The chapters dealing with applications help to reinforce the concepts and methods developed in the context of more down-to-earth problems.Most introductory texts in abstract algebra either avoid cosets, factor objects and homomorphisms completely or introduce them towards the end of the book. In this book, these topics are dealt with early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible, even if there are alternative methods of proof.
This book presents an introduction to variational analysis, a field which unifies theories and techniques developed in calculus of variations, optimization, and control, and covers convex analysis, nonsmooth analysis, and set-valued analysis. It focuses on problems with constraints, the analysis of which involves set-valued mappings and functions that are not differentiable. Applications of variational analysis are interdisciplinary, ranging from financial planning to steering a flying object. The book is addressed to graduate students, researchers, and practitioners in mathematical sciences, engineering, economics, and finance. A typical reader of the book should be familiar with multivariable calculus and linear algebra. Some basic knowledge in optimization, control, and elementary functional analysis is desirable, but all necessary background material is included in the book.
Addresses a central problem in cognitive science, concerning the learning procedures through which humans acquire and represent natural language. Brings together world leading scholars from a range of disciplines, includingcomputational linguistics, psychology, behavioural science, and mathematical linguistics. Will appeal to researchers in computational and mathematical linguistics, psychology and behavioral science, AI and NLP. Represents a wide spectrum of perspectives
Abstract Algebra: A Gentle Introduction advantages a trend in mathematics textbook publishing towards smaller, less expensive and brief introductions to primary courses. The authors move away from the 'everything for everyone' approach so common in textbooks. Instead, they provide the reader with coverage of numerous algebraic topics to cover the most important areas of abstract algebra. Through a careful selection of topics, supported by interesting applications, the authors Intend the book to be used for a one-semester course in abstract algebra. It is suitable for an introductory course in for mathematics majors. The text is also very suitable for education majors who need to have an introduction to the topic. As textbooks go through various editions and authors employ the suggestions of numerous well-intentioned reviewers, these book become larger and larger and subsequently more expensive. This book is meant to counter that process. Here students are given a "gentle introduction," meant to provide enough for a course, yet also enough to encourage them toward future study of the topic. Features Groups before rings approach Interesting modern applications Appendix includes mathematical induction, the well-ordering principle, sets, functions, permutations, matrices, and complex nubers. Numerous exercises at the end of each section Chapter "Hint and Partial Solutions" offers built in solutions manual |
![]() ![]() You may like...
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,341
Discovery Miles 13 410
IBM SPSS Statistics 27 Step by Step - A…
Darren George, Paul Mallery
Hardcover
R6,771
Discovery Miles 67 710
The Theory of Queuing Systems with…
Alexander N. Dudin, Valentina I. Klimenok, …
Hardcover
R2,944
Discovery Miles 29 440
|