![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Linear Algebra: An Inquiry-based Approach is written to give instructors a tool to teach students to develop a mathematical concept from first principles. The Inquiry-based Approach is central to this development. The text is organized around and offers the standard topics expected in a first undergraduate course in linear algebra. In our approach, students begin with a problem and develop the mathematics necessary to describe, solve, and generalize it. Thus students learn a vital skill for the 21st century: the ability to create a solution to a problem. This text is offered to foster an environment that supports the creative process. The twin goals of this textbook are: *Providing opportunities to be creative, *Teaching "ways of thinking" that will make it easier for to be creative. To motivate the development of the concepts and techniques of linear algebra, we include more than two hundred activities on a wide range of problems, from purely mathematical questions, through applications in biology, computer science, cryptography, and more. Table of Contents Introduction and Features For the Student . . . and Teacher Prerequisites Suggested Sequences 1 Tuples and Vectors 2 Systems of Linear Equations 3 Transformations 4 Matrix Algebra 5 Vector Spaces 6 Determinants 7 Eigenvalues and Eigenvectors 8 Decomposition 9 Extras Bibliography Index Bibliography Jeff Suzuki is Associate Professor of Mathematics at Brooklyn College and holds a Ph.D. from Boston University. His research interests include mathematics education, history of mathematics, and the application of mathematics to society and technology. He is a two-time winner of the prestigious Carl B. Allendoerfer Award for expository writing. His publications have appeared in The College Mathematics Journals; Mathematics Magazine; Mathematics Teacher; and the American Mathematical Society's blog on teaching and learning mathematics. His YouTube channel (http://youtube.com/jeffsuzuki1) includes videos on mathematical subjects ranging from elementary arithmetic to linear algebra, cryptography, and differential equations.
This is the revised and expanded edition of the problem book Linear Algebra: Challenging Problems for Students, now entitled Problems in Linear Algebra and Matrix Theory. This new edition contains about fifty-five examples and many new problems, based on the author's lecture notes of Advanced Linear Algebra classes at Nova Southeastern University (NSU-Florida) and short lectures Matrix Gems at Shanghai University and Beijing Normal University.The book is intended for upper division undergraduate and beginning graduate students, and it can be used as text or supplement for a second course in linear algebra. Each chapter starts with Definitions, Facts, and Examples, followed by problems. Hints and solutions to all problems are also provided.
Presented in this monograph is the current state-of-the-art in the theory of convex structures. The notion of convexity covered here is considerably broader than the classic one; specifically, it is not restricted to the context of vector spaces. Classical concepts of order-convex sets (Birkhoff) and of geodesically convex sets (Menger) are directly inspired by intuition; they go back to the first half of this century. An axiomatic approach started to develop in the early Fifties. The author became attracted to it in the mid-Seventies, resulting in the present volume, in which graphs appear side-by-side with Banach spaces, classical geometry with matroids, and ordered sets with metric spaces. A wide variety of results has been included (ranging for instance from the area of partition calculus to that of continuous selection). The tools involved are borrowed from areas ranging from discrete mathematics to infinite-dimensional topology. Although addressed primarily to the researcher, parts of this monograph can be used as a basis for a well-balanced, one-semester graduate course.
This volume contains the proceedings of the Research Workshop of the Israel Science Foundation on Groups, Algebras and Identities, held from March 20-24, 2016, at Bar-Ilan University and the Hebrew University of Jerusalem, Israel, in honor of Boris Plotkin's 90th birthday. The papers in this volume cover various topics of universal algebra, universal algebraic geometry, logic geometry, and algebraic logic, as well as applications of universal algebra to computer science, geometric ring theory, small cancellation theory, and Boolean algebras.
This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*- algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.
This book is the second volume of an intensive "Russian-style" two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures - fields, rings, modules, algebras, groups, and categories - and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry - topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
During the springs of 2011 and 2012, the author was invited by Peking University to give an advanced undergraduate algebra course (once a week over two months each year). This book was written during and for that course. By no way does it claim to be too exhaustive. It was originally intended as a brief introduction to algebra for an extremely pleasant and passionate audience. It certainly reflects some of the author s own tastes, and it was influenced by the feelings and the reactions of the students. Nevertheless, the result covers some advanced undergraduate algebra (rings, ideals, basics of fields theory, algebraic integers, modules, hom and tensor functors, projective modules, etc.) illustrated by numerous examples, counterexamples and exercises. Following a worldwide tradition, the author had planned to conclude by lecturing on the structure of finitely generated modules over principal ideal domains. But during the course, after explaining that the notion of projective modules is more natural than the notion of free modules, it became clear that principal ideal domains needed to be replaced by Dedekind rings; this is much less traditional in the literature but not more difficult."
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
The Center and Focus Problem: Algebraic Solutions and Hypotheses, M. N. Popa and V.V. Pricop, ISBN: 978-1-032-01725-9 (Hardback) This book focuses on an old problem of the qualitative theory of differential equations, called the Center and Focus Problem. It is intended for mathematicians, researchers, professors and Ph.D. students working in the field of differential equations, as well as other specialists who are interested in the theory of Lie algebras, commutative graded algebras, the theory of generating functions and Hilbert series. The book reflects the results obtained by the authors in the last decades. A rather essential result is obtained in solving Poincare's problem. Namely, there are given the upper estimations of the number of Poincare-Lyapunov quantities, which are algebraically independent and participate in solving the Center and Focus Problem that have not been known so far. These estimations are equal to Krull dimensions of Sibirsky graded algebras of comitants and invariants of systems of differential equations.
Chaos is the idea that a system will produce very different long-term behaviors when the initial conditions are perturbed only slightly. Chaos is used for novel, time- or energy-critical interdisciplinary applications. Examples include high-performance circuits and devices, liquid mixing, chemical reactions, biological systems, crisis management, secure information processing, and critical decision-making in politics, economics, as well as military applications, etc. This book presents the latest investigations in the theory of chaotic systems and their dynamics. The book covers some theoretical aspects of the subject arising in the study of both discrete and continuous-time chaotic dynamical systems. This book presents the state-of-the-art of the more advanced studies of chaotic dynamical systems.
"Taken together, the body of information contained in this book provides readers with a bird's-eye view of different aspects of exciting work at the convergence of disciplines that will ultimately lead to a future where we understand how immunity is regulated, and how we can harness this knowledge toward practical ends that reduce human suffering. I commend the editors for putting this volume together." -Arup K. Chakraborty, Robert T. Haslam Professor of Chemical Engineering, and Professor of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA New experimental techniques in immunology have produced large and complex data sets that require quantitative modeling for analysis. This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined. Readers from immunology, quantitative biology, and applied physics will benefit from the following: Fundamental principles of computational immunology and modern quantitative methods for studying immune response at the single molecule, cellular, organism, and population levels. An overview of basic concepts in modeling and data analysis. Coverage of topics where mechanistic modeling has contributed substantially to current understanding. Discussion of genetic diversity of the immune system, cell signaling in the immune system, immune response at the cell population scale, and ecology of host-pathogen interactions.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This is the second volume of Algebras, Rings and Modules: Non-commutative Algebras and Rings by M. Hazewinkel and N. Gubarenis, a continuation stressing the more important recent results on advanced topics of the structural theory of associative algebras, rings and modules.
Recently, many books on multiobjective programming have been published. However, only a few books have been published, in which multiobjective programming under the randomness and the fuzziness are investigated. On the other hand, several books on multilevel programming have been published, in which multiple decision makers are involved in hierarchical decision situations. In this book, we introduce the latest advances in the field of multiobjective programming and multilevel programming under uncertainty. The reader can immediately use proposed methods to solve multiobjective programming and multilevel programming, which are based on linear programming or convex programming technique. Organization of each capter is summarized as follows. In Chapter 2, multiobjective programming problems with random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 3, multiobjective programming problems with fuzzy random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which not only the uncertainty of fuzzy random variables but also the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 4, multiobjective multilevel programming is discussed, and the interactive algorithms are developed to obtain a satisfactory solution, in which the hierarchical decision structure of multiple decision makers is reflected. In Chapter 5, two kinds of farm planning problems are solved by applying the proposed method, in which cost coefficients of crops are expressed by random variables.
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. General algebra, more specifically non-commutative algebra, is poised for major advances in the twenty-first century (together with and in interaction with combinatorics), just as topology, analysis, and probability experienced in the twentieth century. This volume is a continuation and an in-depth study, stressing the non-commutative nature of the first two volumes of Algebras, Rings and Modules by M. Hazewinkel, N. Gubareni, and V. V. Kirichenko. It is largely independent of the other volumes. The relevant constructions and results from earlier volumes have been presented in this volume.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
There is good reason to be excited about Linear Algebra. With the world becoming increasingly digital, Linear Algebra is gaining more and more importance. When we send texts, share video, do internet searches, there are Linear Algebra algorithms in the background that make it work. This concise introduction to Linear Algebra is authored by a leading researcher presents a book that covers all the requisite material for a first course on the topic in a more practical way. The book focuses on the development of the mathematical theory and presents many applications to assist instructors and students to master the material and apply it to their areas of interest, whether it be to further their studies in mathematics, science, engineering, statistics, economics, or other disciplines. Linear Algebra has very appealing features: *It is a solid axiomatic based mathematical theory that is accessible to a large variety of students. *It has a multitude of applications from many different fields, ranging from traditional science and engineering applications to more 'daily life' applications. *It easily allows for numerical experimentation through the use of a variety of readily available software (both commercial and open source). Several suggestions of different software are made. While MATLAB is certainly still a favorite choice, open-source programs such as Sage (especially among algebraists) and the Python libraries are increasingly popular. This text guides the student to try out different programs by providing specific commands.
Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Every chapter consists of exercises with solution provided online at www.Routledge.com/9780367720292
The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: - admissible or permissible inference rules - the derivability of the admissible inference rules - the structural completeness of logics - the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook.
It is well known that "fuzziness"-informationgranulesand fuzzy sets as one of its formal manifestations- is one of important characteristics of human cognitionandcomprehensionofreality. Fuzzy phenomena existinnature and are encountered quite vividly within human society. The notion of a fuzzy set has been introduced by L. A. , Zadeh in 1965 in order to formalize human concepts, in connection with the representation of human natural language and computing with words. Fuzzy sets and fuzzy logic are used for mod- ing imprecise modes of reasoning that play a pivotal role in the remarkable human abilities to make rational decisions in an environment a?ected by - certainty and imprecision. A growing number of applications of fuzzy sets originated from the "empirical-semantic" approach. From this perspective, we were focused on some practical interpretations of fuzzy sets rather than being oriented towards investigations of the underlying mathematical str- tures of fuzzy sets themselves. For instance, in the context of control theory where fuzzy sets have played an interesting and practically relevant function, the practical facet of fuzzy sets has been stressed quite signi?cantly. However, fuzzy sets can be sought as an abstract concept with all formal underpinnings stemming from this more formal perspective. In the context of applications, it is worth underlying that membership functions do not convey the same meaning at the operational level when being cast in various contexts.
Combinatorial Nullstellensatz is a novel theorem in algebra introduced by Noga Alon to tackle combinatorial problems in diverse areas of mathematics. This book focuses on the applications of this theorem to graph colouring. A key step in the applications of Combinatorial Nullstellensatz is to show that the coefficient of a certain monomial in the expansion of a polynomial is nonzero. The major part of the book concentrates on three methods for calculating the coefficients: Alon-Tarsi orientation: The task is to show that a graph has an orientation with given maximum out-degree and for which the number of even Eulerian sub-digraphs is different from the number of odd Eulerian sub-digraphs. In particular, this method is used to show that a graph whose edge set decomposes into a Hamilton cycle and vertex-disjoint triangles is 3-choosable, and that every planar graph has a matching whose deletion results in a 4-choosable graph. Interpolation formula for the coefficient: This method is in particular used to show that toroidal grids of even order are 3-choosable, r-edge colourable r-regular planar graphs are r-edge choosable, and complete graphs of order p+1, where p is a prime, are p-edge choosable. Coefficients as the permanents of matrices: This method is in particular used in the study of the list version of vertex-edge weighting and to show that every graph is (2,3)-choosable. It is suited as a reference book for a graduate course in mathematics.
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number theory and a review of the prerequisite material, then presents the basic theory of algebraic numbers. The treatment of the subject is classical but the newer approach discussed at the end provides a broader theory to include the arithmetic of algebraic curves over finite fields, and even suggests a theory for studying higher dimensional varieties over finite fields. It leads naturally to the Weil conjecture and some delicate questions in algebraic geometry. About the Author Dr. J. S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published several papers in number theory. For hobbies, he likes to travel and hike. His book, Fundamentals of Linear Algebra, is also published by CRC Press. |
You may like...
Research Anthology on Agile Software…
Information R Management Association
Hardcover
R14,547
Discovery Miles 145 470
Biomarkers in Cancer Detection and…
Ranbir Chander Sobti, Masatoshi Watanabe, …
Paperback
R3,268
Discovery Miles 32 680
|