![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
For introductory sophomore-level courses in Linear Algebra or Matrix Theory. This text presents the basic ideas of linear algebra in a manner that offers students a fine balance between abstraction/theory and computational skills. The emphasis is on not just teaching how to read a proof but also on how to write a proof.
The revealing of the phenomenon of superhydrophobicity (the "lotus-effect") has stimulated an interest in wetting of real (rough and chemically heterogeneous) surfaces. In spite of the fact that wetting has been exposed to intensive research for more than 200 years, there still is a broad field open for theoretical and experimental research, including recently revealed superhydrophobic, superoleophobic and superhydrophilic surfaces, so-called liquid marbles, wetting transitions, etc. This book integrates all these aspects within a general framework of wetting of real surfaces, where physical and chemical heterogeneity is essential. Wetting of rough/heterogeneous surfaces is discussed through the use of the variational approach developed recently by the author. It allows natural and elegant grounding of main equations describing wetting of solid surfaces, i.e. Young, Wenzel and Cassie-Baxter equations. The problems of superhydrophobicity, wetting transitions and contact angle hysteresis are discussed in much detail, in view of novel models and new experimental data. The second edition surveys the last achievements in the field of wetting of real surfaces, including new chapters devoted to the wetting of lubricated and gradient surfaces and reactive wetting, which have seen the rapid progress in the last decade. Additional reading, surveying the progress across the entire field of wetting of real surfaces, is suggested to the reader. Contents What is surface tension? Wetting of ideal surfaces Contact angle hysteresis Dynamics of wetting Wetting of rough and chemically heterogeneous surfaces: the Wenzel and Cassie Models Superhydrophobicity, superhydrophilicity, and the rose petal effect Wetting transitions on rough surfaces Electrowetting and wetting in the presence of external fields Nonstick droplets Wetting of lubricated surfaces
During the last few years, the theory of operator algebras, particularly non-self-adjoint operator algebras, has evolved dramatically, experiencing both international growth and interfacing with other important areas. The present volume presents a survey of some of the latest developments in the field in a form that is detailed enough to be accessible to advanced graduate students as well as researchers in the field. Among the topics treated are: operator spaces, Hilbert modules, limit algebras, reflexive algebras and subspaces, relations to basis theory, C* algebraic quantum groups, endomorphisms of operator algebras, conditional expectations and projection maps, and applications, particularly to wavelet theory. The volume also features an historical paper offering a new approach to the Pythagoreans' discovery of irrational numbers.
This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras," which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
Reservation procedures constitute the core of many popular data transmission protocols. They consist of two steps: A request phase in which a station reserves the communication channel and a transmission phase in which the actual data transmission takes place. Such procedures are often applied in communication networks that are characterised by a shared communication channel with large round-trip times. In this book, we propose queuing models for situations that require a reservation procedure and validate their applicability in the context of cable networks. We offer various mathematical models to better understand the performance of these reservation procedures. The book covers four key performance models, and modifications to these: Contention trees, the repairman model, the bulk service queue, and tandem queues. The relevance of this book is not limited to reservation procedures and cable networks, and performance analysts from a variety of areas may benefit, as all models have found application in other fields as well.
The modern theory of algebras of binary relations, reformulated by
Tarski as an abstract, algebraic, equational theory of relation
algebras, has considerable mathematical significance, with
applications in various fields: e.g., in computer
science---databases, specification theory, AI---and in
anthropology, economics, physics, and philosophical logic.
This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The main attention is paid to fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work is focused on algorithms of multiplication, inversion and description of eigenstructure and includes a large number of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods to compute eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms being derived also for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable of any order representations is studied in the third part. This method is then used in the last part in order to get a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and the accessible style the text will be useful to engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
X Kochendorffer, L.A. Kalu: lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed."
I am pleased to participate in this Summer School and look forward to sharing some ideas with you over the next few days. At the outset I would like to describe the approach I will take in 1 presenting the material. I aim to present the material in a non rigorous way and hopefully in an intuitive manner. At the same time I will draw attention to some of the major technical problems. It is pitched at someone who is unfamiliar with the area. The results presented here are unfamiliar to actuaries and insurance mathematicians although they are well known in some other fields. During the next few minutes I will make some preliminary comments. The purpose of these comments is to place the lectures in perspective and motivate the upcoming material. After this I will outline briefly the topics to be covered during the rest of this lecture and in the lectures that will follow. One of the central themes of these lectures is RISK-SHARING. Risk-sharing is a common response to uncertainty. Such uncertainty can arise from natural phenomena or social causes. One particular form of risk-sharing is the insurance mechanism. I will be dealing with models which have a natural application in the insurance area but they have been applied in other areas as well. In fact some of the paradigms to be discussed have the capacity to provide a unified treatment of problems in diverse fields."
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization.
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
Simplicity theory is an extension of stability theory to a wider class of structures, containing, among others, the random graph, pseudo-finite fields, and fields with a generic automorphism. Following Kim's proof of forking symmetry' which implies a good behaviour of model-theoretic independence, this area of model theory has been a field of intense study. It has necessitated the development of some important new tools, most notably the model-theoretic treatment of hyperimaginaries (classes modulo type-definable equivalence relations). It thus provides a general notion of independence (and of rank in the supersimple case) applicable to a wide class of algebraic structures. The basic theory of forking independence is developed, and its properties in a simple structure are analyzed. No prior knowledge of stability theory is assumed; in fact many stability-theoretic results follow either from more general propositions, or are developed in side remarks. Audience: This book is intended both as an introduction to simplicity theory accessible to graduate students with some knowledge of model theory, and as a reference work for research in the field.
An invaluable summary of research work done in the period from 1978 to the present
This classic book provides a broad introduction to homological algebra, including a comprehensive set of exercises. Since publication of the first edition homological algebra has found a large number of applications in many different fields. Today, it is a truly indispensable tool in fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In this new edition, the authors have selected a number of different topics and describe some of the main applications and results to illustrate the range and depths of these developments. The background assumes little more than knowledge of the algebraic theories groups and of vector spaces over a field.
This volume contains both invited lectures and contributed talks presented at the meeting on Total Positivity and its Applications held at the guest house of the University of Zaragoza in Jaca, Spain, during the week of September 26-30, 1994. There were present at the meeting almost fifty researchers from fourteen countries. Their interest in thesubject of Total Positivity made for a stimulating and fruitful exchange of scientific information. Interest to participate in the meeting exceeded our expectations. Regrettably, budgetary constraints forced us to restriet the number of attendees. Professor S. Karlin, of Stanford University, who planned to attend the meeting had to cancel his participation at the last moment. Nonetheless, his almost universal spiritual presence energized and inspired all of us in Jaca. More than anyone, he influenced the content, style and quality of the presentations given at the meeting. Every article in these Proceedings (except some by Karlin hirnself) references his influential treatise Total Positivity, Volume I, Stanford University Press, 1968. Since its appearance, this book has intrigued and inspired the minds of many researchers (one of us, in his formative years, read the galley proofs and the other of us first doubted its value but then later became its totally committed disciple). All of us present at the meeting encourage Professor Karlin to return to the task of completing the anxiously awaited Volume 11 of Total Positivity.
This volume gives an up-to-date review of the subject Integration in Finite Terms. The book collects four significant texts together with an extensive bibliography and commentaries discussing these works and their impact. These texts, either out of print or never published before, are fundamental to the subject of the book. Applications in combinatorics and physics have aroused a renewed interest in this well-developed area devoted to finding solutions of differential equations and, in particular, antiderivatives, expressible in terms of classes of elementary and special functions.
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest.
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which is, essentially, a man-made system, such as automated manufacturing lines or transportation systems. Its main advantage is its formalism which allows us to clearly describe complex notions and the possibilities to transpose theoretical results between dioids and practical applications.
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
This textbook on linear algebra includes the key topics of the
subject that most advanced undergraduates need to learn before
entering graduate school. All the usual topics, such as complex
vector spaces, complex inner products, the Spectral theorem for
normal operators, dual spaces, the minimal polynomial, the Jordan
canonical form, and the rational canonical form, are covered, along
with a chapter on determinants at the end of the book. In addition,
there is material throughout the text on linear differential
equations and how it integrates with all of the important concepts
in linear algebra.
|
![]() ![]() You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,070
Discovery Miles 10 700
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
|