![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
This graduate-level textbook provides an elementary exposition of the theory of automorphic representations and L-functions for the general linear group in an adelic setting. Definitions are kept to a minimum and repeated when reintroduced so that the book is accessible from any entry point, and with no prior knowledge of representation theory. The book includes concrete examples of global and local representations of GL(n), and presents their associated L-functions. In Volume 1, the theory is developed from first principles for GL(1), then carefully extended to GL(2) with complete detailed proofs of key theorems. Several proofs are presented for the first time, including Jacquet's simple and elegant proof of the tensor product theorem. In Volume 2, the higher rank situation of GL(n) is given a detailed treatment. Containing numerous exercises by Xander Faber, this book will motivate students and researchers to begin working in this fertile field of research.
This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic(linear) error-correcting codes, including cyclic codesruler and compass constructionscryptographysymmetry of patterns in the real plane "Abstract Algebra: Structure and Application" is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers-an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
An accessible and practical introduction to wavelets
This book takes a deep dive into several key linear algebra subjects as they apply to data analytics and data mining. The book offers a case study approach where each case will be grounded in a real-world application. This text is meant to be used for a second course in applications of Linear Algebra to Data Analytics, with a supplemental chapter on Decision Trees and their applications in regression analysis. The text can be considered in two different but overlapping general data analytics categories, clustering and interpolation. Knowledge of mathematical techniques related to data analytics, and exposure to interpretation of results within a data analytics context, are particularly valuable for students studying undergraduate mathematics. Each chapter of this text takes the reader through several relevant and case studies using real world data. All data sets, as well as Python and R syntax are provided to the reader through links to Github documentation. Following each chapter is a short exercise set in which students are encouraged to use technology to apply their expanding knowledge of linear algebra as it is applied to data analytics. A basic knowledge of the concepts in a first Linear Algebra course are assumed; however, an overview of key concepts are presented in the Introduction and as needed throughout the text.
In this complete introduction to the theory of finding derivatives of scalar-, vector- and matrix-valued functions with respect to complex matrix variables, Hjorungnes describes an essential set of mathematical tools for solving research problems where unknown parameters are contained in complex-valued matrices. The first book examining complex-valued matrix derivatives from an engineering perspective, it uses numerous practical examples from signal processing and communications to demonstrate how these tools can be used to analyze and optimize the performance of engineering systems. Covering un-patterned and certain patterned matrices, this self-contained and easy-to-follow reference deals with applications in a range of areas including wireless communications, control theory, adaptive filtering, resource management and digital signal processing. Over 80 end-of-chapter exercises are provided, with a complete solutions manual available online.
Linear algebra and matrix theory are among the most important and most frequently applied branches of mathematics. They are especially important in solving engineering and economic models, where either the model is assumed linear, or the nonlinear model is approximated by a linear model, and the resulting linear model is examined.This book is mainly a textbook, that covers a one semester upper division course or a two semester lower division course on the subject.The second edition will be an extended and modernized version of the first edition. We added some new theoretical topics and some new applications from fields other than economics. We also added more difficult exercises at the end of each chapter which require deep understanding of the theoretical issues. We also modernized some proofs in the theoretical discussions which give better overview of the study material. In preparing the manuscript we also corrected the typos and errors, so the second edition will be a corrected, extended and modernized new version of the first edition.
This book studies algebraic representations of graphs in order to investigate combinatorial structures via local symmetries. Topological, combinatorial and algebraic classifications are distinguished by invariants of polynomial type and algorithms are designed to determine all such classifications with complexity analysis. Being a summary of the author's original work on graph embeddings, this book is an essential reference for researchers in graph theory. Contents Abstract Graphs Abstract Maps Duality Orientability Orientable Maps Nonorientable Maps Isomorphisms of Maps Asymmetrization Asymmetrized Petal Bundles Asymmetrized Maps Maps within Symmetry Genus Polynomials Census with Partitions Equations with Partitions Upper Maps of a Graph Genera of a Graph Isogemial Graphs Surface Embeddability
This volume contains three invited lectures and sixteen other papers which were pre- sented at the 14th International Conference on Nearrings and Nearfields held in Stellen- bosch, South Africa, July 9-161997. It was also the first nearring conference to be held after the untimely death of James R Clay, who over the years had been an inspiration to many algebraists interested in nearring theory. The occasion was marked by the invitedtalk of Gerhard Betsch, which was devoted to an overview of Clay's contributions to nearring and nearfield theory. This book is affectionately dedicated to the memory of James R Clay. All the papers presented here have been refereed under the supervision of the Editorial Board: Fong Yuen, Carl Maxson, John Meldrum, GUnterPilz, Leon van Wyk and Andries van der Walt. Thanks are due to the referees and to the Editorial Board. A special word of thanks is due to Wen-fong Ke for preparing the final version of the TEX files, and to Fong Yuen for his pains in arranging for the publication of the volume with Kluwer Academic Publishers. Andries van der Walt Stellenbosch, August 1999 COMBINATORIAL ASPECTS OF NEARRING THEORY TO THE MEMORY OF JAMES RAY CLAY GERHARDBETSCH A briefcurriculum vitae ofJames Ray (Jim) Clay Born November5,1938 at Burley (Idaho). Died January 16, 1996 at Tucson (Arizona). Married since 1959 to Carol Cline BURGE, "a truly beautiful daughter of Zion" (Dedication ofJim's 1992 book). Three daughters, ten grand-children.
This book constitutes an elementary introduction to rings and fields, in particular Galois rings and Galois fields, with regard to their application to the theory of quantum information, a field at the crossroads of quantum physics, discrete mathematics and informatics. The existing literature on rings and fields is primarily mathematical. There are a great number of excellent books on the theory of rings and fields written by and for mathematicians, but these can be difficult for physicists and chemists to access. This book offers an introduction to rings and fields with numerous examples. It contains an application to the construction of mutually unbiased bases of pivotal importance in quantum information. It is intended for graduate and undergraduate students and researchers in physics, mathematical physics and quantum chemistry (especially in the domains of advanced quantum mechanics, quantum optics, quantum information theory, classical and quantum computing, and computer engineering). Although the book is not written for mathematicians, given the large number of examples discussed, it may also be of interest to undergraduate students in mathematics.
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampere equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton-Jacobi-Bellman equations Improving policies for Hamilton-Jacobi-Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton-Jacobi-Bellman equations based on diagonally implicit symplectic Runge-Kutta methods Numerical solution of the simple Monge-Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton-Jacobi-Bellman equation within the European Union Emission Trading Scheme
This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classifica tion of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics-e.g. complex structures, Caylay numbers and symplectic spaces - have been added. I should like to thank Mr. M. L. Johnson who made many useful suggestions for the problems in the third edition. I am also grateful to my colleague S. Halperin who assisted in the revision of Chapters XII and XIII and to Mr. F. Gomez who helped to prepare the subject index. Finally, I have to express my deep gratitude to my colleague J. R. Van stone who worked closely with me in the preparation of all the revisions and additions and who generously helped with the proof reading."
This book gives a comprehensive treatment of the Grassmannian varieties and their Schubert subvarieties, focusing on the geometric and representation-theoretic aspects of Grassmannian varieties. Research of Grassmannian varieties is centered at the crossroads of commutative algebra, algebraic geometry, representation theory, and combinatorics. Therefore, this text uniquely presents an exciting playing field for graduate students and researchers in mathematics, physics, and computer science, to expand their knowledge in the field of algebraic geometry. The standard monomial theory (SMT) for the Grassmannian varieties and their Schubert subvarieties are introduced and the text presents some important applications of SMT including the Cohen-Macaulay property, normality, unique factoriality, Gorenstein property, singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory. This text would serve well as a reference book for a graduate work on Grassmannian varieties and would be an excellent supplementary text for several courses including those in geometry of spherical varieties, Schubert varieties, advanced topics in geometric and differential topology, representation theory of compact and reductive groups, Lie theory, toric varieties, geometric representation theory, and singularity theory. The reader should have some familiarity with commutative algebra and algebraic geometry.
For courses in Differential Equations and Linear Algebra. The right balance between concepts, visualisation, applications, and skills Differential Equations and Linear Algebra provides the conceptual development and geometric visualisation of a modern differential equations and linear algebra course that is essential to science and engineering students. It balances traditional manual methods with the new, computer-based methods that illuminate qualitative phenomena - a comprehensive approach that makes accessible a wider range of more realistic applications. The book combines core topics in elementary differential equations with concepts and methods of elementary linear algebra. It starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout.
The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In this monograph, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This three-volume handbook covers methods as well as applications. This third volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
For courses in algebra & trigonometry. "Your world is profoundly mathematical." Bob Blitzercontinues to support and inspire students with his engaging approach, makingthis text beloved year after year by students and instructors alike. Blitzer'sunique background in mathematics and behavioral science informs a wide range ofapplications, drawn from pop culture and up-to-date references, that appeal tostudents of all majors and connect math to students' lives.
A unique, applied approach to problem solving in linear algebra
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
* A new approach that breaks new ground using psychophysics and mathematics in order to investigate human interaction * Identifies the critical direction of change, and the means to achieve it, in order to maintain a stable social environment that is going to require testable and provable theories that apply to our social space and the various cultures and groups that exist within it * An important text for graduate and advanced undergraduate students or classes, along with private and government analysts all operating within the areas of political theory, detection theory, social psychology, organizational behavior, psychophysics, and applied mathematics in the social and information sciences
* A new approach that breaks new ground using psychophysics and mathematics in order to investigate human interaction * Identifies the critical direction of change, and the means to achieve it, in order to maintain a stable social environment that is going to require testable and provable theories that apply to our social space and the various cultures and groups that exist within it * An important text for graduate and advanced undergraduate students or classes, along with private and government analysts all operating within the areas of political theory, detection theory, social psychology, organizational behavior, psychophysics, and applied mathematics in the social and information sciences
This volume provides a systematic presentation of the theory of differential tensor algebras and their categories of modules. It involves reduction techniques which have proved to be very useful in the development of representation theory of finite dimensional algebras. The main results obtained with these methods are presented in an elementary and self contained way. The authors provide a fresh point of view of well known facts on tame and wild differential tensor algebras, on tame and wild algebras, and on their modules. But there are also some new results and some new proofs. Their approach presents a formal alternative to the use of bocses (bimodules over categories with coalgebra structure) with underlying additive categories and pull-back reduction constructions. Professional mathematicians working in representation theory and related fields, and graduate students interested in homological algebra will find much of interest in this book.
After a forty-year lull, the study of word-values in groups has sprung back into life with some spectacular new results in finite group theory. These are largely motivated by applications to profinite groups, including the solution of an old problem of Serre. This book presents a comprehensive account of the known results, both old and new. The more elementary methods are developed from scratch, leading to self-contained proofs and improvements of some classic results about infinite soluble groups. This is followed by a detailed introduction to more advanced topics in finite group theory, and a full account of the applications to profinite groups. The author presents proofs of some very recent results and discusses open questions for further research. This self-contained account is accessible to research students, but will interest all research workers in group theory.
Drawing on rich classroom observations of educators teaching in China and the U.S., this book details an innovative and effective approach to teaching algebra at the elementary level, namely, "teaching through example-based problem solving" (TEPS). Recognizing young children's particular cognitive and developmental capabilities, this book powerfully argues for the importance of infusing algebraic thinking into early grade mathematics teaching and illustrates how this has been achieved by teachers in U.S. and Chinese contexts. Documenting best practice and students' responses to example-based instruction, the text demonstrates that this TEPS approach - which involves the use of worked examples, representations, and deep questions - helps students learn and master fundamental mathematical ideas, making it highly effective in developing algebraic readiness and mathematical understanding. This text will benefit post-graduate students, researchers, and academics in the fields of mathematics, STEM, and elementary education, as well as algebra research more broadly. Those interested in teacher education, classroom practice, and developmental and cognitive psychology will also find this volume of interest.
This book consists of a collection of original, refereed research and expository articles on elliptic aspects of geometric analysis on manifolds, including singular, foliated and non-commutative spaces. The topics covered include the index of operators, torsion invariants, K-theory of operator algebras and L2-invariants. There are contributions from leading specialists, and the book maintains a reasonable balance between research, expository and mixed papers. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,317
Discovery Miles 53 170
|