![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Drawing on rich classroom observations of educators teaching in China and the U.S., this book details an innovative and effective approach to teaching algebra at the elementary level, namely, "teaching through example-based problem solving" (TEPS). Recognizing young children's particular cognitive and developmental capabilities, this book powerfully argues for the importance of infusing algebraic thinking into early grade mathematics teaching and illustrates how this has been achieved by teachers in U.S. and Chinese contexts. Documenting best practice and students' responses to example-based instruction, the text demonstrates that this TEPS approach - which involves the use of worked examples, representations, and deep questions - helps students learn and master fundamental mathematical ideas, making it highly effective in developing algebraic readiness and mathematical understanding. This text will benefit post-graduate students, researchers, and academics in the fields of mathematics, STEM, and elementary education, as well as algebra research more broadly. Those interested in teacher education, classroom practice, and developmental and cognitive psychology will also find this volume of interest.
This unique textbook presents a course on computational linear algebra. Offers many unique applications. MATLAB is used throughout.
This volume collects longer articles on the analysis and numerics of Maxwell's equations. The topics include functional analytic and Hilbert space methods, compact embeddings, solution theories and asymptotics, electromagnetostatics, time-harmonic Maxwell's equations, time-dependent Maxwell's equations, eddy current approximations, scattering and radiation problems, inverse problems, finite element methods, boundary element methods, and isogeometric analysis.
This book is for junior/senior-level first courses in linear algebra and assumes calculus as a prerequisite. This thorough and accessible text, from one of the leading figures in the use of technology in linear algebra, gives students a challenging and broad understanding of the subject. The author infuses key concepts with their modern practical applications to offer students examples of how mathematics is used in the real world. Each chapter contains integrated worked examples and chapter tests. The book stresses the important roles geometry and visualisation play in understanding linear algebra.
For courses in algebra & trigonometry. "Your world is profoundly mathematical." Bob Blitzercontinues to support and inspire students with his engaging approach, makingthis text beloved year after year by students and instructors alike. Blitzer'sunique background in mathematics and behavioral science informs a wide range ofapplications, drawn from pop culture and up-to-date references, that appeal tostudents of all majors and connect math to students' lives.
The purpose in writing this expository monograph has been three-fold. First, the author set out to present the solution of a problem posed by Wolfgang Krull in 1932. He asked whether what is now called the "Krull-Schmidt Theorem" holds for artinian modules. A negative answer was published only in 1995 by Facchini, Herbera, Levy and Vamos. Second, the author presents the answer to a question posed by Warfield in 1975, namely, whether the Krull-Schmidt-Theorem holds for serial modules. Facchini published a negative answer in 1996. The solution to the Warfield problem shows an interesting behavior; in fact, it is a phenomena so rare in the history of Krull-Schmidt type theorems that its presentation to a wider mathematical audience provides the third incentive for this monograph. Briefly, the Krull-Schmidt-Theorem holds for some, not all, classes of modules. When it does hold, any two indecomposable decompositions are uniquely determined up to one permutation. For serial modules the theorem does not hold, but any two indecomposable decompositions are uniquely determined up to two permutations. Apart from these issues, the book addresses various topics in module theory and ring theory, some now considered classical (such as Goldie dimension, semiperfect rings, Krull dimension, rings of quotients, and their applications) and others more specialized (such as dual Goldie dimension, semilocal endomorphism rings, serial rings and modules, exchange property, -pure-injective modules). Open problems conclude the work.
* A new approach that breaks new ground using psychophysics and mathematics in order to investigate human interaction * Identifies the critical direction of change, and the means to achieve it, in order to maintain a stable social environment that is going to require testable and provable theories that apply to our social space and the various cultures and groups that exist within it * An important text for graduate and advanced undergraduate students or classes, along with private and government analysts all operating within the areas of political theory, detection theory, social psychology, organizational behavior, psychophysics, and applied mathematics in the social and information sciences
Queueing Theory deals with systems where there is contention for resources, but the demands are only known probabilistically. This book can be considered to be a monograph or a textbook, and thus is aimed at two audiences: those who already know Queueing Theory but would like to know more of the Linear Algebraic Approach; and as a rst course for students who don't already have a strong background in probability, and feel more comfortable with algebraic arguments. Also, the equations are well suited to easy computation. In fact, there is much discussion on how various properties can be easily computed in any language that has automatic matrix operations (e.g., MATLAB). To help with physical insight, there are over 80 gures, numerous examples and exercises distributed throughout the book. There are, perhaps 50 books on QT that are available today, and most practitioners have several of them on their shelves. This book would be a good addition, as well as a good supplement to another text. This second edition has been updated throughout including a new chapter on Semi Markov Processes and new material on matrix representations of distributions and Power-tailed distribution. Lester Lipsky is a Professor in the Department of Computer Science and Engineering at the University of Connecticut.
This is a comprehensive introduction to the modular representation theory of finite groups, with an emphasis on block theory. The two volumes take into account classical results and concepts as well as some of the modern developments in the area. Volume 1 introduces the broader context, starting with general properties of finite group algebras over commutative rings, moving on to some basics in character theory and the structure theory of algebras over complete discrete valuation rings. In Volume 2, blocks of finite group algebras over complete p-local rings take centre stage, and many key results which have not appeared in a book before are treated in detail. In order to illustrate the wide range of techniques in block theory, the book concludes with chapters classifying the source algebras of blocks with cyclic and Klein four defect groups, and relating these classifications to the open conjectures that drive block theory.
New to the Fourth Edition Reorganised and revised chapter seven and thirteen New exercises and examples Expanded, updated references Further historical material on figures besides Galois: Omar Khayyam, Vandermonde, Ruffini, and Abel A new final chapter discussing other directions in which Galois Theory has developed: the inverse Galois problem, differential Galois theory, and a (very) brief introduction to p-adic Galois representations.
In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "category" refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.
Lattices and Ordered Algebraic Structures provides a lucid and concise introduction to the basic results concerning the notion of an order. Although as a whole it is mainly intended for beginning postgraduates, the prerequisities are minimal and selected parts can profitably be used to broaden the horizon of the advanced undergraduate. The treatment is modern, with a slant towards recent developments in the theory of residuated lattices and ordered regular semigroups. Topics covered include: residuated mappings; Galois connections; modular, distributive, and complemented lattices; Boolean algebras; pseudocomplemented lattices; Stone algebras; Heyting algebras; ordered groups; lattice-ordered groups; representable groups; Archimedean ordered structures; ordered semigroups; naturally ordered regular and inverse Dubreil-Jacotin semigroups. Featuring material that has been hitherto available only in research articles, and an account of the range of applications of the theory, there are also many illustrative examples and numerous exercises throughout, making it ideal for use as a course text, or as a basic introduction to the field for researchers in mathematics, logic and computer science.
This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.
This text seeks to generate interest in abstract algebra by introducing each new structure and topic via a real-world application. The down-to-earth presentation is accessible to a readership with no prior knowledge of abstract algebra. Students are led to algebraic concepts and questions in a natural way through their everyday experiences. Applications include: Identification numbers and modular arithmetic(linear) error-correcting codes, including cyclic codesruler and compass constructionscryptographysymmetry of patterns in the real plane "Abstract Algebra: Structure and Application" is suitable as a text for a first course on abstract algebra whose main purpose is to generate interest in the subject or as a supplementary text for more advanced courses. The material paves the way to subsequent courses that further develop the theory of abstract algebra and will appeal to students of mathematics, mathematics education, computer science, and engineering interested in applications of algebraic concepts.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Tensors are used throughout the sciences, especially in solid state physics and quantum information theory. This book brings a geometric perspective to the use of tensors in these areas. It begins with an introduction to the geometry of tensors and provides geometric expositions of the basics of quantum information theory, Strassen's laser method for matrix multiplication, and moment maps in algebraic geometry. It also details several exciting recent developments regarding tensors in general. In particular, it discusses and explains the following material previously only available in the original research papers: (1) Shitov's 2017 refutation of longstanding conjectures of Strassen on rank additivity and Common on symmetric rank; (2) The 2017 Christandl-Vrana-Zuiddam quantum spectral points that bring together quantum information theory, the asymptotic geometry of tensors, matrix multiplication complexity, and moment polytopes in geometric invariant theory; (3) the use of representation theory in quantum information theory, including the solution of the quantum marginal problem; (4) the use of tensor network states in solid state physics, and (5) recent geometric paths towards upper bounds for the complexity of matrix multiplication. Numerous open problems appropriate for graduate students and post-docs are included throughout.
This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers-an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
For courses in Differential Equations and Linear Algebra. The right balance between concepts, visualisation, applications, and skills Differential Equations and Linear Algebra provides the conceptual development and geometric visualisation of a modern differential equations and linear algebra course that is essential to science and engineering students. It balances traditional manual methods with the new, computer-based methods that illuminate qualitative phenomena - a comprehensive approach that makes accessible a wider range of more realistic applications. The book combines core topics in elementary differential equations with concepts and methods of elementary linear algebra. It starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout.
An accessible and practical introduction to wavelets
Linear algebra and matrix theory are among the most important and most frequently applied branches of mathematics. They are especially important in solving engineering and economic models, where either the model is assumed linear, or the nonlinear model is approximated by a linear model, and the resulting linear model is examined.This book is mainly a textbook, that covers a one semester upper division course or a two semester lower division course on the subject.The second edition will be an extended and modernized version of the first edition. We added some new theoretical topics and some new applications from fields other than economics. We also added more difficult exercises at the end of each chapter which require deep understanding of the theoretical issues. We also modernized some proofs in the theoretical discussions which give better overview of the study material. In preparing the manuscript we also corrected the typos and errors, so the second edition will be a corrected, extended and modernized new version of the first edition.
Introduction to Traveling Waves is an invitation to research focused on traveling waves for undergraduate and masters level students. Traveling waves are not typically covered in the undergraduate curriculum, and topics related to traveling waves are usually only covered in research papers, except for a few texts designed for students. This book includes techniques that are not covered in those texts. Through their experience involving undergraduate and graduate students in a research topic related to traveling waves, the authors found that the main difficulty is to provide reading materials that contain the background information sufficient to start a research project without an expectation of an extensive list of prerequisites beyond regular undergraduate coursework. This book meets that need and serves as an entry point into research topics about the existence and stability of traveling waves. Features Self-contained, step-by-step introduction to nonlinear waves written assuming minimal prerequisites, such as an undergraduate course on linear algebra and differential equations. Suitable as a textbook for a special topics course, or as supplementary reading for courses on modeling. Contains numerous examples to support the theoretical material. Supplementary MATLAB codes available via GitHub.
This volume contains three invited lectures and sixteen other papers which were pre- sented at the 14th International Conference on Nearrings and Nearfields held in Stellen- bosch, South Africa, July 9-161997. It was also the first nearring conference to be held after the untimely death of James R Clay, who over the years had been an inspiration to many algebraists interested in nearring theory. The occasion was marked by the invitedtalk of Gerhard Betsch, which was devoted to an overview of Clay's contributions to nearring and nearfield theory. This book is affectionately dedicated to the memory of James R Clay. All the papers presented here have been refereed under the supervision of the Editorial Board: Fong Yuen, Carl Maxson, John Meldrum, GUnterPilz, Leon van Wyk and Andries van der Walt. Thanks are due to the referees and to the Editorial Board. A special word of thanks is due to Wen-fong Ke for preparing the final version of the TEX files, and to Fong Yuen for his pains in arranging for the publication of the volume with Kluwer Academic Publishers. Andries van der Walt Stellenbosch, August 1999 COMBINATORIAL ASPECTS OF NEARRING THEORY TO THE MEMORY OF JAMES RAY CLAY GERHARDBETSCH A briefcurriculum vitae ofJames Ray (Jim) Clay Born November5,1938 at Burley (Idaho). Died January 16, 1996 at Tucson (Arizona). Married since 1959 to Carol Cline BURGE, "a truly beautiful daughter of Zion" (Dedication ofJim's 1992 book). Three daughters, ten grand-children.
Features Written to be self-contained. Ideal as a primary textbook for an undergraduate course in linear algebra. Applications of the general theory which are of interest to disciplines outside of mathematics, such as engineering. |
You may like...
Computational Probability - Algorithms…
John H. Drew, Diane L. Evans, …
Hardcover
R4,099
Discovery Miles 40 990
Distributed and Parallel Systems - From…
Peter Kacsuk, Gabriele Kotsis
Hardcover
R5,273
Discovery Miles 52 730
Stable and Efficient Cubature-based…
Dominik Ballreich
Hardcover
Photochemistry - Volume 32
William M. Horspool, Norman S. Allen, …
Hardcover
R10,119
Discovery Miles 101 190
Corporate Social Responsibility and the…
Nattavud Pimpa, Timothy Moore
Hardcover
R3,351
Discovery Miles 33 510
Data Abstraction and Problem Solving…
Janet Prichard, Frank Carrano
Paperback
R2,280
Discovery Miles 22 800
|