![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.
Around 1978, a mutation of associative algebras was introduced to generalize the formalism of classical mechanics as well as quantum mechanics. This volume presents the first book devoted to a self-contained and detailed treatment of the mathematical theory of mutation algebras, which is based on research in this subject over the past fifteen years. The book also deals with a broader class of algebras, mutations of alternative algebras, which are a natural generalization of mutations of associative algebras. A complete structure theory, including automorphisms, derivations and certain representations, is given for mutations of artinian alternative algebras, and, in particular, of Cayley--Dickson algebras. Since the mutation algebras do not form a variety, the structure theory explored in this volume takes quite a different approach from the standard theory of nonassociative algebras and provides an important interplay with the theory of noncommutative (associative) algebras through mutation parameters. New simple algebras and open problems presented in this book will stimulate additional research and applications in the area. This book will be valuable to graduate students, mathematicians and physicists interested in applications of algebras.
Proceedings of the NATO Advanced Study Institute, Antwerp, Belgium, August 2-12, 1983
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
Category theory is a general mathematical theory of structures and of structures of structures. It occupied a central position in contemporary mathematics as well as computer science. This book describes the history of category theory whereby illuminating its symbiotic relationship to algebraic topology, homological algebra, algebraic geometry and mathematical logic and elaboratively develops the connections with the epistemological significance.
Nestled between number theory, combinatorics, algebra and analysis lies a rapidly developing subject in mathematics variously known as additive combinatorics, additive number theory, additive group theory, and combinatorial number theory. Its main objects of study are not abelian groups themselves, but rather the additive structure of subsets and subsequences of an abelian group, i.e., sumsets and subsequence sums. This text is a hybrid of a research monograph and an introductory graduate textbook. With few exceptions, all results presented are self-contained, written in great detail, and only reliant upon material covered in an advanced undergraduate curriculum supplemented with some additional Algebra, rendering this bookusable as an entry-level text. However, it will perhaps be of even more interest to researchers already in the field. The majority of material is not found in book form and includes many new results as well. Even classical results, when included, are given in greater generality or using new proof variations. The text has a particular focus on results of a more exact and precise nature, results with strong hypotheses and yet stronger conclusions, and on fundamental aspects of the theory. Also included are intricate results often neglected in other texts owing to their complexity. Highlights include an extensive treatment of Freiman Homomorphisms and the Universal Ambient Group of sumsets A+B, an entire chapter devoted to Hamidoune s Isoperimetric Method, a novel generalization allowing infinite summands in finite sumset questions, weighted zero-sum problems treated in the general context of viewing homomorphisms as weights, and simplified proofs of the Kemperman Structure Theorem and the Partition Theorem for setpartitions."
This self-contained monograph explores a new theory centered around boolean representations of simplicial complexes leading to a new class of complexes featuring matroids as central to the theory. The book illustrates these new tools to study the classical theory of matroids as well as their important geometric connections. Moreover, many geometric and topological features of the theory of matroids find their counterparts in this extended context. Graduate students and researchers working in the areas of combinatorics, geometry, topology, algebra and lattice theory will find this monograph appealing due to the wide range of new problems raised by the theory. Combinatorialists will find this extension of the theory of matroids useful as it opens new lines of research within and beyond matroids. The geometric features and geometric/topological applications will appeal to geometers. Topologists who desire to perform algebraic topology computations will appreciate the algorithmic potential of boolean representable complexes.
This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.
This is a book about graph homomorphisms. Graph theory is now an
established discipline but the study of graph homomorphisms has
only recently begun to gain wide acceptance and interest. The
subject gives a useful perspective in areas such as graph
reconstruction, products, fractional and circular colorings, and
has applications in complexity theory, artificial intelligence,
telecommunication, and, most recently, statistical physics.
Group cohomology has a rich history that goes back a century or more. Its origins are rooted in investigations of group theory and num ber theory, and it grew into an integral component of algebraic topology. In the last thirty years, group cohomology has developed a powerful con nection with finite group representations. Unlike the early applications which were primarily concerned with cohomology in low degrees, the in teractions with representation theory involve cohomology rings and the geometry of spectra over these rings. It is this connection to represen tation theory that we take as our primary motivation for this book. The book consists of two separate pieces. Chronologically, the first part was the computer calculations of the mod-2 cohomology rings of the groups whose orders divide 64. The ideas and the programs for the calculations were developed over the last 10 years. Several new features were added over the course of that time. We had originally planned to include only a brief introduction to the calculations. However, we were persuaded to produce a more substantial text that would include in greater detail the concepts that are the subject of the calculations and are the source of some of the motivating conjectures for the com putations. We have gathered together many of the results and ideas that are the focus of the calculations from throughout the mathematical literature."
Algebra I For Dummies, 2nd Edition (9781119293576) was previously published as Algebra I For Dummies, 2nd Edition (9780470559642). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Factor fearlessly, conquer the quadratic formula, and solve linear equations There's no doubt that algebra can be easy to some while extremely challenging to others. If you're vexed by variables, Algebra I For Dummies, 2nd Edition provides the plain-English, easy-to-follow guidance you need to get the right solution every time! Now with 25% new and revised content, this easy-to-understand reference not only explains algebra in terms you can understand, but it also gives you the necessary tools to solve complex problems with confidence. You'll understand how to factor fearlessly, conquer the quadratic formula, and solve linear equations. Includes revised and updated examples and practice problems Provides explanations and practical examples that mirror today's teaching methods Other titles by Sterling: Algebra II For Dummies and Algebra Workbook For Dummies Whether you're currently enrolled in a high school or college algebra course or are just looking to brush-up your skills, Algebra I For Dummies, 2nd Edition gives you friendly and comprehensible guidance on this often difficult-to-grasp subject.
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.
Deals with the most basic notion of linear algebra, to bring emphasis on approaches to the topic serving at the elementary level and more broadly. A typical feature is where computational algorithms and theoretical proofs are brought together. Another is respect for symmetry, so that when this has some part in the form of a matter it should also be reflected in the treatment. Issues relating to computational method are covered. These interests may have suggested a limited account, to be rounded-out suitably. However this limitation where basic material is separated from further reaches of the subject has an appeal of its own. To the `elementary operations' method of the textbooks for doing linear algebra, Albert Tucker added a method with his `pivot operation'. Here there is a more primitive method based on the `linear dependence table', and yet another based on `rank reduction'. The determinant is introduced in a completely unusual upside-down fashion where Cramer's rule comes first. Also dealt with is what is believed to be a completely new idea, of the `alternant', a function associated with the affine space the way the determinant is with the linear space, with n+1 vector arguments, as the determinant has n. Then for affine (or barycentric) coordinates we find a rule which is an unprecedented exact counterpart of Cramer's rule for linear coordinates, where the alternant takes on the role of the determinant. These are among the more distinct or spectacular items for possible novelty, or unfamiliarity. Others, with or without some remark, may be found scattered in different places.
Nilpotent Ue algebras have played an Important role over the last ye!US : either In the domain at Algebra when one considers Its role In the classlftcation problems of Ue algebras, or In the domain of geometry since one knows the place of nilmanlfolds In the Illustration, the description and representation of specific situations. The first fondamental results In the study of nilpotent Ue algebras are obvlsouly, due to Umlauf. In his thesis (leipZig, 1991), he presented the first non trlvlal classifications. The systematic study of real and complex nilpotent Ue algebras was Independently begun by D1xmler and Morozov. Complete classifications In dimension less than or equal to six were given and the problems regarding superior dimensions brought to light, such as problems related to the existence from seven up, of an infinity of non Isomorphic complex nilpotent Ue algebras. One can also find these losts (for complex and real algebras) In the books about differential geometry by Vranceanu. A more formal approach within the frame of algebraiC geometry was developed by Michele Vergne. The variety of Ue algebraiC laws Is an affine algebraic subset In this view the role variety and the nilpotent laws constitute a Zarlski's closed of Irreduclbl~ components appears naturally as well the determination or estimate of their numbers. Theoritical physiCiSts, Interested In the links between diverse mechanics have developed the Idea of contractions of Ue algebras (Segal, Inonu, Wlgner). That Idea was In fact very convenient In the determination of components.
Die Bibliotheca Teubneriana, gegrundet 1849, ist die weltweit alteste, traditionsreichste und umfangreichste Editionsreihe griechischer und lateinischer Literatur von der Antike bis zur Neuzeit. Pro Jahr erscheinen 4-5 neue Editionen. Samtliche Ausgaben werden durch eine lateinische oder englische Praefatio erganzt. Die wissenschaftliche Betreuung der Reihe obliegt einem Team anerkannter Philologen: Gian Biagio Conte (Scuola Normale Superiore di Pisa) Marcus Deufert (Universitat Leipzig) James Diggle (University of Cambridge) Donald J. Mastronarde (University of California, Berkeley) Franco Montanari (Universita di Genova) Heinz-Gunther Nesselrath (Georg-August-Universitat Goettingen) Oliver Primavesi (Ludwig-Maximilians Universitat Munchen) Michael D. Reeve (University of Cambridge) Richard J. Tarrant (Harvard University) Vergriffene Titel werden als Print-on-Demand-Nachdrucke wieder verfugbar gemacht. Zudem werden alle Neuerscheinungen der Bibliotheca Teubneriana parallel zur gedruckten Ausgabe auch als eBook angeboten. Die alteren Bande werden sukzessive ebenfalls als eBook bereitgestellt. Falls Sie einen vergriffenen Titel bestellen moechten, der noch nicht als Print-on-Demand angeboten wird, schreiben Sie uns an: [email protected] Samtliche in der Bibliotheca Teubneriana erschienenen Editionen lateinischer Texte sind in der Datenbank BTL Online elektronisch verfugbar.
This book discusses major theories and applications of fuzzy soft multisets and their generalization which help researchers get all the related information at one place. The primary objective of this book is to help bridge the gap to provide a textbook on the theories in fuzzy soft multisets and their applications in real life. It is targeted to researchers and students working in the field of fuzzy set theory, multiset theory, soft set theory and their applications. Uncertainty, vagueness and the representation of imperfect knowledge have been a problem in many fields of research, including artificial intelligence, network and communication, signal processing, machine learning, computer science, information technology, as well as medical science, economics, environments and engineering. There are many mathematical tools for dealing with uncertainties. They include fuzzy set theory, multiset theory, soft set theory and soft multiset theory.
This volume lays down the foundations of a theory of rings based on finite maps. The purpose of the ring is entirely discussed in terms of the global properties of the one-turn map. Proposing a theory of rings based on such maps, this work offers another perspective on storage ring theory.
This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartan's famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petracci's proof of the Poincare-Birkhoff-Witt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflo's theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostant's structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his "Clifford algebra analogue" of the Hopf-Koszul-Samelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. "
This book is designed to expose from a general and universal standpoint a variety ofmethods and results concerning integrable systems ofclassical me- chanics. By such systems we mean Hamiltonian systems with a finite number of degrees of freedom possessing sufficiently many conserved quantities (in- tegrals ofmotion) so that in principle integration ofthe correspondingequa- tions of motion can be reduced to quadratures, i.e. to evaluating integrals of known functions. The investigation of these systems was an important line ofstudy in the last century which, among other things, stimulated the appearance of the theory ofLie groups. Early in our century, however, the work ofH. Poincare made it clear that global integrals of motion for Hamiltonian systems exist only in exceptional cases, and the interest in integrable systems declined. Until recently, only a small number ofsuch systems with two or more de- grees of freedom were known. In the last fifteen years, however, remarkable progress has been made in this direction due to the invention by Gardner, Greene, Kruskal, and Miura [GGKM 19671 ofa new approach to the integra- tion ofnonlinear evolution equations known as the inverse scattering method or the method of isospectral deformations. Applied to problems of mechanics this method revealed the complete in- tegrability of numerous classical systems. It should be pointed out that all systems of this kind discovered so far are related to Lie algebras, although often this relationship is not sosimpleas the oneexpressed by the well-known theorem of E. Noether.
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book. The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas. The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
This proceedings is composed of the papers resulting from the NATO work-shop "Perspectives in Ring Theory" and the work-shop "Geometry and Invariant The ory of Representations of Quivers" . Three reports on problem sessions have been induced in the part corresponding to the work-shop where they belonged. One more report on a problem session, the "lost" problem session, will be published elsewhere eventually. vii Acknowledgement The meeting became possible by the financial support of the Scientific Affairs Division of NATO. The people at this division have been very helpful in the orga nization of the meeting, in particular we commemorate Dr. Mario di Lullo, who died unexpectedly last year, but who has been very helpful with the organization of earlier meetings in Ring Theory. For additional financial support we thank the national foundation for scientific research (NFWO), the rector of the University of Antwerp, UIA, and the Belgian Ministry of Education. We also gladly acknowledge support from the Belgian Friends of the Hebrew University and the chairman Prof. P. Van Remoortere who honored Prof. S. Amitsur for his continuous contributions to the mathematical activities at the University of Antwerp. I thank the authors who contributed their paper(s) to this proceedings and the lecturers for their undisposable contributions towards the success of the work-shop. Finally I thank Danielle for allowing me to spoil another holiday period in favor of a congress."
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.
This work presents invited contributions from the second "International Conference on Mathematics and Statistics" jointly organized by the AUS (American University of Sharjah) and the AMS (American Mathematical Society). Addressing several research fields across the mathematical sciences, all of the papers were prepared by faculty members at universities in the Gulf region or prominent international researchers. The current volume is the first of its kind in the UAE and is intended to set new standards of excellence for collaboration and scholarship in the region. |
![]() ![]() You may like...
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,886
Discovery Miles 58 860
Differential Equations and Linear…
C. Edwards, David Penney, …
Paperback
R2,497
Discovery Miles 24 970
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,155
Discovery Miles 31 550
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,481
Discovery Miles 24 810
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
|