![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Widely acclaimed algebra text. This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings.
Reservation procedures constitute the core of many popular data transmission protocols. They consist of two steps: A request phase in which a station reserves the communication channel and a transmission phase in which the actual data transmission takes place. Such procedures are often applied in communication networks that are characterised by a shared communication channel with large round-trip times. In this book, we propose queuing models for situations that require a reservation procedure and validate their applicability in the context of cable networks. We offer various mathematical models to better understand the performance of these reservation procedures. The book covers four key performance models, and modifications to these: Contention trees, the repairman model, the bulk service queue, and tandem queues. The relevance of this book is not limited to reservation procedures and cable networks, and performance analysts from a variety of areas may benefit, as all models have found application in other fields as well.
X Kochendorffer, L.A. Kalu: lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed."
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras," which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer-Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.
The modern theory of algebras of binary relations, reformulated by
Tarski as an abstract, algebraic, equational theory of relation
algebras, has considerable mathematical significance, with
applications in various fields: e.g., in computer
science---databases, specification theory, AI---and in
anthropology, economics, physics, and philosophical logic.
This two-volume work presents a systematic theoretical and computational study of several types of generalizations of separable matrices. The main attention is paid to fast algorithms (many of linear complexity) for matrices in semiseparable, quasiseparable, band and companion form. The work is focused on algorithms of multiplication, inversion and description of eigenstructure and includes a large number of illustrative examples throughout the different chapters. The second volume, consisting of four parts, addresses the eigenvalue problem for matrices with quasiseparable structure and applications to the polynomial root finding problem. In the first part the properties of the characteristic polynomials of principal leading submatrices, the structure of eigenspaces and the basic methods to compute eigenvalues are studied in detail for matrices with quasiseparable representation of the first order. The second part is devoted to the divide and conquer method, with the main algorithms being derived also for matrices with quasiseparable representation of order one. The QR iteration method for some classes of matrices with quasiseparable of any order representations is studied in the third part. This method is then used in the last part in order to get a fast solver for the polynomial root finding problem. The work is based mostly on results obtained by the authors and their coauthors. Due to its many significant applications and the accessible style the text will be useful to engineers, scientists, numerical analysts, computer scientists and mathematicians alike.
I am pleased to participate in this Summer School and look forward to sharing some ideas with you over the next few days. At the outset I would like to describe the approach I will take in 1 presenting the material. I aim to present the material in a non rigorous way and hopefully in an intuitive manner. At the same time I will draw attention to some of the major technical problems. It is pitched at someone who is unfamiliar with the area. The results presented here are unfamiliar to actuaries and insurance mathematicians although they are well known in some other fields. During the next few minutes I will make some preliminary comments. The purpose of these comments is to place the lectures in perspective and motivate the upcoming material. After this I will outline briefly the topics to be covered during the rest of this lecture and in the lectures that will follow. One of the central themes of these lectures is RISK-SHARING. Risk-sharing is a common response to uncertainty. Such uncertainty can arise from natural phenomena or social causes. One particular form of risk-sharing is the insurance mechanism. I will be dealing with models which have a natural application in the insurance area but they have been applied in other areas as well. In fact some of the paradigms to be discussed have the capacity to provide a unified treatment of problems in diverse fields."
This contributed volume is a follow-up to the 2013 volume of the same title, published in honor of noted Algebraist David Eisenbud's 65th birthday. It brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Category Theory, Combinatorics, Computational Algebra, Homological Algebra, Hyperplane Arrangements, and Non-commutative Algebra. The book aims to showcase the area and aid junior mathematicians and researchers who are new to the field in broadening their background and gaining a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest.
This classic book provides a broad introduction to homological algebra, including a comprehensive set of exercises. Since publication of the first edition homological algebra has found a large number of applications in many different fields. Today, it is a truly indispensable tool in fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In this new edition, the authors have selected a number of different topics and describe some of the main applications and results to illustrate the range and depths of these developments. The background assumes little more than knowledge of the algebraic theories groups and of vector spaces over a field.
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
This volume contains both invited lectures and contributed talks presented at the meeting on Total Positivity and its Applications held at the guest house of the University of Zaragoza in Jaca, Spain, during the week of September 26-30, 1994. There were present at the meeting almost fifty researchers from fourteen countries. Their interest in thesubject of Total Positivity made for a stimulating and fruitful exchange of scientific information. Interest to participate in the meeting exceeded our expectations. Regrettably, budgetary constraints forced us to restriet the number of attendees. Professor S. Karlin, of Stanford University, who planned to attend the meeting had to cancel his participation at the last moment. Nonetheless, his almost universal spiritual presence energized and inspired all of us in Jaca. More than anyone, he influenced the content, style and quality of the presentations given at the meeting. Every article in these Proceedings (except some by Karlin hirnself) references his influential treatise Total Positivity, Volume I, Stanford University Press, 1968. Since its appearance, this book has intrigued and inspired the minds of many researchers (one of us, in his formative years, read the galley proofs and the other of us first doubted its value but then later became its totally committed disciple). All of us present at the meeting encourage Professor Karlin to return to the task of completing the anxiously awaited Volume 11 of Total Positivity.
If $X$ is a manifold then the $\mathbb R$-algebra $C^\infty (X)$ of smooth functions $c:X\rightarrow \mathbb R$ is a $C^\infty $-ring. That is, for each smooth function $f:\mathbb R^n\rightarrow \mathbb R$ there is an $n$-fold operation $\Phi _f:C^\infty (X)^n\rightarrow C^\infty (X)$ acting by $\Phi _f:(c_1,\ldots ,c_n)\mapsto f(c_1,\ldots ,c_n)$, and these operations $\Phi _f$ satisfy many natural identities. Thus, $C^\infty (X)$ actually has a far richer structure than the obvious $\mathbb R$-algebra structure. The author explains the foundations of a version of algebraic geometry in which rings or algebras are replaced by $C^\infty $-rings. As schemes are the basic objects in algebraic geometry, the new basic objects are $C^\infty $-schemes, a category of geometric objects which generalize manifolds and whose morphisms generalize smooth maps. The author also studies quasicoherent sheaves on $C^\infty $-schemes, and $C^\infty $-stacks, in particular Deligne-Mumford $C^\infty$-stacks, a 2-category of geometric objects generalizing orbifolds. Many of these ideas are not new: $C^\infty$-rings and $C^\infty $-schemes have long been part of synthetic differential geometry. But the author develops them in new directions. In earlier publications, the author used these tools to define d-manifolds and d-orbifolds, ``derived'' versions of manifolds and orbifolds related to Spivak's ``derived manifolds''.
An invaluable summary of research work done in the period from 1978 to the present
This textbook on linear algebra includes the key topics of the
subject that most advanced undergraduates need to learn before
entering graduate school. All the usual topics, such as complex
vector spaces, complex inner products, the Spectral theorem for
normal operators, dual spaces, the minimal polynomial, the Jordan
canonical form, and the rational canonical form, are covered, along
with a chapter on determinants at the end of the book. In addition,
there is material throughout the text on linear differential
equations and how it integrates with all of the important concepts
in linear algebra.
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.
This is the first comprehensive basic monograph on mixed Hodge structures. Starting with a summary of classic Hodge theory from a modern vantage point the book goes on to explain Deligne's mixed Hodge theory. Here proofs are given using cubical schemes rather than simplicial schemes. Next come Hain's and Morgan's results on mixed Hodge structures related to homotopy theory. Steenbrink's approach of the limit mixed Hodge structure is then explained using the language of nearby and vanishing cycle functors bridging the passage to Saito's theory of mixed Hodge modules which is the subject of the last chapter. Since here D-modules are essential, these are briefly introduced in a previous chapter. At various stages applications are given, ranging from the Hodge conjecture to singularities. The book ends with three large appendices, each one in itself a resourceful summary of tools and results not easily found in one place in the existing literature (homological algebra, algebraic and differential topology, stratified spaces and singularities). The book is intended for advanced graduate students, researchers in complex algebraic geometry as well as interested researchers in nearby fields (algebraic geometry, mathematical physics
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
This book develops integral identities, mostly involving multidimensional functions and infinite limits of integration, whose evaluations are intractable by common means. It exposes a methodology based on the multivariate power substitution and its variants, assisted by the software tool Mathematica. The approaches introduced comprise the generalized method of exhaustion, the multivariate power substitution and its variants, and the use of permutation symmetry to evaluate definite integrals, which are very important both in their own right, and as necessary intermediate steps towards more involved computation. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, will lead to no result at all, or will lead to a known result. However, there is a special class of integrals (i.e., innovative integrals) which, if used as a starting point for such approaches, will lead to new and useful results, and can also enable the reader to generate many other new results that are not in the book. The reader will find a myriad of novel approaches for evaluating integrals, with a focus on tools such as Mathematica as a means of obtaining useful results, and also checking whether they are already known. Results presented involve the gamma function, the hypergeometric functions, the complementary error function, the exponential integral function, the Riemann zeta function, and others that will be introduced as they arise. The book concludes with selected engineering applications, e.g., involving wave propagation, antenna theory, non-Gaussian and weighted Gaussian distributions, and other areas. The intended audience comprises junior and senior sciences majors planning to continue in the pure and applied sciences at the graduate level, graduate students in mathematics and the sciences, and junior and established researchers in mathematical physics, engineering, and mathematics. Indeed, the pedagogical inclination of the exposition will have students work out, understand, and efficiently use multidimensional integrals from first principles.
Efficient parallel solutions have been found to many problems. Some of them can be obtained automatically from sequential programs, using compilers. However, there is a large class of problems - irregular problems - that lack efficient solutions. IRREGULAR 94 - a workshop and summer school organized in Geneva - addressed the problems associated with the derivation of efficient solutions to irregular problems. This book, which is based on the workshop, draws on the contributions of outstanding scientists to present the state of the art in irregular problems, covering aspects ranging from scientific computing, discrete optimization, and automatic extraction of parallelism. Audience: This first book on parallel algorithms for irregular problems is of interest to advanced graduate students and researchers in parallel computer science. |
You may like...
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
R326
Discovery Miles 3 260
|