Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > General
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
This comprehensive text shows how various notions of logic can be viewed as notions of universal algebra providing more advanced concepts for those who have an introductory knowledge of algebraic logic, as well as those wishing to delve into more theoretical aspects.
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Backlund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
This textbook provides an introduction to abstract algebra for advanced undergraduate students. Based on the authors' notes at the Department of Mathematics, National Chung Cheng University, it contains material sufficient for three semesters of study. It begins with a description of the algebraic structures of the ring of integers and the field of rational numbers. Abstract groups are then introduced. Technical results such as Lagrange's theorem and Sylow's theorems follow as applications of group theory. The theory of rings and ideals forms the second part of this textbook, with the ring of integers, the polynomial rings and matrix rings as basic examples. Emphasis will be on factorization in a factorial domain. The final part of the book focuses on field extensions and Galois theory to illustrate the correspondence between Galois groups and splitting fields of separable polynomials.Three whole new chapters are added to this second edition. Group action is introduced to give a more in-depth discussion on Sylow's theorems. We also provide a formula in solving combinatorial problems as an application. We devote two chapters to module theory, which is a natural generalization of the theory of the vector spaces. Readers will see the similarity and subtle differences between the two. In particular, determinant is formally defined and its properties rigorously proved.The textbook is more accessible and less ambitious than most existing books covering the same subject. Readers will also find the pedagogical material very useful in enhancing the teaching and learning of abstract algebra.
The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents: Preface Sobolev Space and Preliminaries The Vanishing Viscosity Method of Some Nonlinear Evolution System The Vanishing Viscosity Method of Quasilinear Hyperbolic System Physical Viscosity and Viscosity of Difference Scheme Convergence of Lax-Friedrichs Scheme, Godunov Scheme and Glimm Scheme Electric-Magnetohydrodynamic Equations References
This is a 2001 account of Algebraic Number Theory, a field which has grown to touch many other areas of pure mathematics. It is written primarily for beginning graduate students in pure mathematics, and encompasses everything that most such students are likely to need; others who need the material will also find it accessible. It assumes no prior knowledge of the subject, but a firm basis in the theory of field extensions at an undergraduate level is required, and an appendix covers other prerequisites. The book covers the two basic methods of approaching Algebraic Number Theory, using ideals and valuations, and includes material on the most usual kinds of algebraic number field, the functional equation of the zeta function and a substantial digression on the classical approach to Fermat's Last Theorem, as well as a comprehensive account of class field theory. Many exercises and an annotated reading list are also included.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
This volume features selected, refereed papers on various aspects of statistics, matrix theory and its applications to statistics, as well as related numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributions were originally presented at the 25th International Workshop on Matrices and Statistics (IWMS 2016), held in Funchal (Madeira), Portugal on June 6-9, 2016. The IWMS workshop series brings together statisticians, computer scientists, data scientists and mathematicians, helping them better understand each other's tools, and fostering new collaborations at the interface of matrix theory and statistics.
The statistical models confronting econometricians are complicated in nature so it is no easy task to apply the procedures recommended by classical statisticians to such models. This book presents the reader with mathematical tools drawn from matrix calculus and zero-one matrices and demonstrates how the use of their tools greatly facilitates such applications in a sequence of linear econometric models of increasing statistical complexity. The book differs from others in that the matrix calculus results are derived from a few basic rules which are generalizations of the rules used in ordinary calculus. Moreover the properties of several new zero-one matrices are investigated.
Under intense scrutiny for the last few decades, Multiple Objective Decision Making (MODM) has been useful for dealing with the multiple-criteria decisions and planning problems associated with many important applications in fields including management science, engineering design, and transportation. Rough set theory has also proved to be an effective mathematical tool to counter the vague description of objects in fields such as artificial intelligence, expert systems, civil engineering, medical data analysis, data mining, pattern recognition, and decision theory. Rough Multiple Objective Decision Making is perhaps the first book to combine state-of-the-art application of rough set theory, rough approximation techniques, and MODM. It illustrates traditional techniques-and some that employ simulation-based intelligent algorithms-to solve a wide range of realistic problems. Application of rough theory can remedy two types of uncertainty (randomness and fuzziness) which present significant drawbacks to existing decision-making methods, so the authors illustrate the use of rough sets to approximate the feasible set, and they explore use of rough intervals to demonstrate relative coefficients and parameters involved in bi-level MODM. The book reviews relevant literature and introduces models for both random and fuzzy rough MODM, applying proposed models and algorithms to problem solutions. Given the broad range of uses for decision making, the authors offer background and guidance for rough approximation to real-world problems, with case studies that focus on engineering applications, including construction site layout planning, water resource allocation, and resource-constrained project scheduling. The text presents a general framework of rough MODM, including basic theory, models, and algorithms, as well as a proposed methodological system and discussion of future research.
Homological mirror symmetry has its origins in theoretical physics but is now of great interest in mathematics due to the deep connections it reveals between different areas of geometry and algebra. This book offers a self-contained and accessible introduction to the subject via the representation theory of algebras and quivers. It is suitable for graduate students and others without a great deal of background in homological algebra and modern geometry. Each part offers a different perspective on homological mirror symmetry. Part I introduces the A-infinity formalism and offers a glimpse of mirror symmetry using representations of quivers. Part II discusses various A- and B-models in mirror symmetry and their connections through toric and tropical geometry. Part III deals with mirror symmetry for Riemann surfaces. The main mathematical ideas are illustrated by means of simple examples coming mainly from the theory of surfaces, helping the reader connect theory with intuition.
In this complete introduction to the theory of finding derivatives of scalar-, vector- and matrix-valued functions with respect to complex matrix variables, Hjorungnes describes an essential set of mathematical tools for solving research problems where unknown parameters are contained in complex-valued matrices. The first book examining complex-valued matrix derivatives from an engineering perspective, it uses numerous practical examples from signal processing and communications to demonstrate how these tools can be used to analyze and optimize the performance of engineering systems. Covering un-patterned and certain patterned matrices, this self-contained and easy-to-follow reference deals with applications in a range of areas including wireless communications, control theory, adaptive filtering, resource management and digital signal processing. Over 80 end-of-chapter exercises are provided, with a complete solutions manual available online.
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
Linear Algebra: A First Course with Applications explores the fundamental ideas of linear algebra, including vector spaces, subspaces, basis, span, linear independence, linear transformation, eigenvalues, and eigenvectors, as well as a variety of applications, from inventories to graphics to Googlea (TM)s PageRank. Unlike other texts on the subject, this classroom-tested book gives students enough time to absorb the material by focusing on vector spaces early on and using computational sections as numerical interludes. It offers introductions to Maplea"[, MATLABA(R), and TI-83 Plus for calculating matrix inverses, determinants, eigenvalues, and eigenvectors. Moving from the specific to the general, the author raises questions, provides motivation, and discusses strategy before presenting answers. Discussions of motivation and strategy include content and context to help students learn.
The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on.
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori's abelian category of mixed motives. It develops Nori's approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori's unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
This book provides a careful treatment of the theory of algebraic Riccati equations. It consists of four parts: the first part is a comprehensive account of necessary background material in matrix theory including careful accounts of recent developments involving indefinite scalar products and rational matrix functions. The second and third parts form the core of the book and concern the solutions of algebraic Riccati equations arising from continuous and discrete systems. The geometric theory and iterative analysis are both developed in detail. The last part of the book is an exciting collection of eight problem areas in which algebraic Riccati equations play a crucial role. These applications range from introductions to the classical linear quadratic regulator problems and the discrete Kalman filter to modern developments in HD*W*w control and total least squares methods.
Heun's equation is a second-order differential equation which crops up in a variety of forms in a wide range of problems in applied mathematics. These include integral equations of potential theory, wave propogation, electrostatic oscillation, and Schrodinger's equation. This volume brings together important research work for the first time, providing an important resource for all those interested in this mathematical topic. Both the current theory and the main areas of application are surveyed, and includes contributions from authoritative researchers such as Felix Arscott (Canada), P. Maroni (France), and Gerhard Wolf (Germany).
This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois representations. One of the outstanding problems in arithmetic is a generalization of class field theory to non-abelian Galois extension of number fields. In this volume, we discuss some relations between this problem and cusp forms of weight 1.
This second edition covers essentially the same topics as the first. However, the presentation of the material has been extensively revised and improved. In addition, there are two new chapters, one dealing with the fundamental theorem of finitely generated abelian groups and the other a brief introduction to semigroup theory and automata.This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes, and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space, semigroups and automata. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects to be relatively painless.In this book, cosets, factor objects and homomorphisms are introduced early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible.
This second edition covers essentially the same topics as the first. However, the presentation of the material has been extensively revised and improved. In addition, there are two new chapters, one dealing with the fundamental theorem of finitely generated abelian groups and the other a brief introduction to semigroup theory and automata.This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes, and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space, semigroups and automata. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of the congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects to be relatively painless.In this book, cosets, factor objects and homomorphisms are introduced early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible. |
You may like...
Linear Algebra with Applications, Global…
Steven Leon, Lisette de Pillis
Paperback
R2,178
Discovery Miles 21 780
Algebra for Beginners - With Numerous…
I. (Isaac) 1820-1884 Todhunter
Hardcover
R866
Discovery Miles 8 660
|