![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups. This new edition of a widely adopted textbook covers applications from biology, science, and engineering. It offers numerous updates based on feedback from first edition adopters, as well as improved and simplified proofs of a number of important theorems. Many new exercises have been added, while new study projects examine skewfields, quaternions, and octonions. The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. These three chapters provide a quick introduction to algebra, sufficient to exhibit irrational numbers or to gain a taste of cryptography. Chapters four through seven cover abstract groups and monoids, orthogonal groups, stochastic matrices, Lagrange's theorem, groups of units of monoids, homomorphisms, rings, and integral domains. The first seven chapters provide basic coverage of abstract algebra, suitable for a one-semester or two-quarter course. Each chapter includes exercises of varying levels of difficulty, chapter notes that point out variations in notation and approach, and study projects that cover an array of applications and developments of the theory. The final chapters deal with slightly more advanced topics, suitable for a second-semester or third-quarter course. These chapters delve deeper into the theory of rings, fields, and groups. They discuss modules, including vector spaces and abelian groups, group theory, and quasigroups. This textbook is suitable for use in an undergraduate course on abstract algebra for mathematics, computer science, and education majors, along with students from other STEM fields.
Renewed interest in vector spaces and linear algebras has spurred the search for large algebraic structures composed of mathematical objects with special properties. Bringing together research that was otherwise scattered throughout the literature, Lineability: The Search for Linearity in Mathematics collects the main results on the conditions for the existence of large algebraic substructures. It investigates lineability issues in a variety of areas, including real and complex analysis. After presenting basic concepts about the existence of linear structures, the book discusses lineability properties of families of functions defined on a subset of the real line as well as the lineability of special families of holomorphic (or analytic) functions defined on some domain of the complex plane. It next focuses on spaces of sequences and spaces of integrable functions before covering the phenomenon of universality from an algebraic point of view. The authors then describe the linear structure of the set of zeros of a polynomial defined on a real or complex Banach space and explore specialized topics, such as the lineability of various families of vectors. The book concludes with an account of general techniques for discovering lineability in its diverse degrees.
Nonlinear Systems and Their Remarkable Mathematical Structures, Volume 2 is written in a careful pedagogical manner by experts from the field of nonlinear differential equations and nonlinear dynamical systems (both continuous and discrete). This book aims to clearly illustrate the mathematical theories of nonlinear systems and its progress to both non-experts and active researchers in this area. Just like the first volume, this book is suitable for graduate students in mathematics, applied mathematics and engineering sciences, as well as for researchers in the subject of differential equations and dynamical systems. Features Collects contributions on recent advances in the subject of nonlinear systems Aims to make the advanced mathematical methods accessible to the non-experts Suitable for a broad readership including researchers and graduate students in mathematics and applied mathematics
Commutation Relations, Normal Ordering, and Stirling Numbers provides an introduction to the combinatorial aspects of normal ordering in the Weyl algebra and some of its close relatives. The Weyl algebra is the algebra generated by two letters U and V subject to the commutation relation UV VU = I. It is a classical result that normal ordering powers of VU involve the Stirling numbers. The book is a one-stop reference on the research activities and known results of normal ordering and Stirling numbers. It discusses the Stirling numbers, closely related generalizations, and their role as normal ordering coefficients in the Weyl algebra. The book also considers several relatives of this algebra, all of which are special cases of the algebra in which UV qVU = hVs holds true. The authors describe combinatorial aspects of these algebras and the normal ordering process in them. In particular, they define associated generalized Stirling numbers as normal ordering coefficients in analogy to the classical Stirling numbers. In addition to the combinatorial aspects, the book presents the relation to operational calculus, describes the physical motivation for ordering words in the Weyl algebra arising from quantum theory, and covers some physical applications.
The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.
A Course in Differential Equations with Boundary Value Problems, 2nd Edition adds additional content to the author's successful A Course on Ordinary Differential Equations, 2nd Edition. This text addresses the need when the course is expanded. The focus of the text is on applications and methods of solution, both analytical and numerical, with emphasis on methods used in the typical engineering, physics, or mathematics student's field of study. The text provides sufficient problems so that even the pure math major will be sufficiently challenged. The authors offer a very flexible text to meet a variety of approaches, including a traditional course on the topic. The text can be used in courses when partial differential equations replaces Laplace transforms. There is sufficient linear algebra in the text so that it can be used for a course that combines differential equations and linear algebra. Most significantly, computer labs are given in MATLAB (R), Mathematica (R), and Maple (TM). The book may be used for a course to introduce and equip the student with a knowledge of the given software. Sample course outlines are included. Features MATLAB (R), Mathematica (R), and Maple (TM) are incorporated at the end of each chapter. All three software packages have parallel code and exercises; There are numerous problems of varying difficulty for both the applied and pure math major, as well as problems for engineering, physical science and other students. An appendix that gives the reader a "crash course" in the three software packages. Chapter reviews at the end of each chapter to help the students review Projects at the end of each chapter that go into detail about certain topics and introduce new topics that the students are now ready to see Answers to most of the odd problems in the back of the book
Addresses a central problem in cognitive science, concerning the learning procedures through which humans acquire and represent natural language. Brings together world leading scholars from a range of disciplines, includingcomputational linguistics, psychology, behavioural science, and mathematical linguistics. Will appeal to researchers in computational and mathematical linguistics, psychology and behavioral science, AI and NLP. Represents a wide spectrum of perspectives
There are precisely two further generalizations of the real and complex numbers, namely, the quaternions and the octonions. The quaternions naturally describe rotations in three dimensions. In fact, all (continuous) symmetry groups are based on one of these four number systems. This book provides an elementary introduction to the properties of the octonions, with emphasis on their geometric structure. Elementary applications covered include the rotation groups and their spacetime generalization, the Lorentz group, as well as the eigenvalue problem for Hermitian matrices. In addition, more sophisticated applications include the exceptional Lie groups, octonionic projective spaces, and applications to particle physics including the remarkable fact that classical supersymmetry only exists in particular spacetime dimensions.
Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design. Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented. The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.
Vector algebra is a particularly weak point in undergraduate mathematics but seminal to understanding more advanced algebra topics. The book is meant as a primary book but might also be used as a supplement to courses in linear algebra and multivariable or vector calculus. There are no direct, current competitors at this level (undergraduate)
In this book the authors try to bridge the gap between the treatments of matrix theory and linear algebra. It is aimed at graduate and advanced undergraduate students seeking a foundation in mathematics, computer science, or engineering. It will also be useful as a reference book for those working on matrices and linear algebra for use in their scientific work.
An instant New York Times Bestseller! "Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning." -The New York Times From the New York Times-bestselling author of How Not to Be Wrong-himself a world-class geometer-a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world-it explains it. Shape shows us how.
The book deals with dynamical systems, generated by linear mappings of finite dimensional spaces and their applications. These systems have a relatively simple structure from the point of view of the modern dynamical systems theory. However, for the dynamical systems of this sort, it is possible to obtain explicit answers to specific questions being useful in applications. The considered problems are natural and look rather simple, but in reality in the course of investigation, they confront users withplenty of subtle questions and their detailed analysis needs a substantial effort. The problems arising are related to linear algebra and dynamical systems theory, and therefore, the book can be considered as a natural amplification, refinement and supplement to linear algebra and dynamical systems theory textbooks."
This is a memorial volume dedicated to A. L. S. Corner, previously Professor in Oxford, who published important results on algebra, especially on the connections of modules with endomorphism algebras. The volume contains refereed contributions which are related to the work of Corner.It contains also an unpublished extended paper of Corner himself. A memorial volume with important contributions related to algebra.
With an emphasis on problem solving and critical thinking, Mark Dugopolski's College Algebra, Sixth Edition gives students the essential strategies to help them develop the comprehension and confidence they need to be successful in this course. Students will find carefully placed learning aids and review tools to help them do the math. Note: You are purchasing a standalone product; MyMathLab does not come packaged with this content. MyMathLab is not a self-paced technology and should only be purchased when required by an instructor. If you would like to purchase both the physical text and MyMathLab, search for: 0321919742 / 9780321919748 College Algebra plus New MyMathLab with Pearson eText -- Access Card Package Package consists of: 0321431308 / 9780321431301 MyMathLab -- Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker 0321916603 / 9780321916600 College Algebra
There has been considerable interest recently in the subject of patterns in permutations and words, a new branch of combinatorics with its roots in the works of Rotem, Rogers, and Knuth in the 1970s. Consideration of the patterns in question has been extremely interesting from the combinatorial point of view, and it has proved to be a useful language in a variety of seemingly unrelated problems, including the theory of Kazhdan-Lusztig polynomials, singularities of Schubert varieties, interval orders, Chebyshev polynomials, models in statistical mechanics, and various sorting algorithms, including sorting stacks and sortable permutations. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology. The author collects the main results in the field in this up-to-date, comprehensive reference volume. He highlights significant achievements in the area, and points to research directions and open problems. The book will be of interest to researchers and graduate students in theoretical computer science and mathematics, in particular those working in algebraic combinatorics and combinatorics on words. It will also be of interest to specialists in other branches of mathematics, theoretical physics, and computational biology.
This undergraduate textbook on Linear Algebra and n-Dimensional Geometry, in a self-teaching style, is invaluable for sophomore level undergraduates in mathematics, engineering, business, and the sciences. These are classical subjects on which there are many mathematics books in theorem-proof style, but this unique volume has its focus on developing the mathematical modeling as well as computational and algorithmic skills in students at this level. The explanations in this book are detailed, lucid, and supported with numerous well-constructed examples to capture the interest and encourage the student to master the material.
In the spirit of the author's Basic Language of Mathematics, this companion volume is a careful exposition of the concepts and processes of Linear Algebra. It stresses cautious and clear explanations, avoiding reliance on co-ordinates as much as possible, and with special, but not exclusive, attention to the finite-dimensional situation. It is intended to also serve as a conceptual and technical background for use in geometry and analysis as well as other applications.
This book presents methods for the computational solution of some important problems of linear algebra: linear systems, linear least squares problems, eigenvalue problems, and linear programming problems. The book also includes a chapter on the fast Fourier transform and a very practical introduction to the solution of linear algebra problems on modern supercomputers.The book contains the relevant theory for most of the methods employed. It also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs for solving linear algebraic problems. Highly readable FORTRAN and MATLAB codes are presented which solve all of the main problems studied.
This book presents methods for the computational solution of some important problems of linear algebra: linear systems, linear least squares problems, eigenvalue problems, and linear programming problems. The book also includes a chapter on the fast Fourier transform and a very practical introduction to the solution of linear algebra problems on modern supercomputers.The book contains the relevant theory for most of the methods employed. It also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs for solving linear algebraic problems. Highly readable FORTRAN and MATLAB codes are presented which solve all of the main problems studied.
The content in Chapter 1-3 is a fairly standard one-semester course on local rings with the goal to reach the fact that a regular local ring is a unique factorization domain. The homological machinery is also supported by Cohen-Macaulay rings and depth. In Chapters 4-6 the methods of injective modules, Matlis duality and local cohomology are discussed. Chapters 7-9 are not so standard and introduce the reader to the generalizations of modules to complexes of modules. Some of Professor Iversen's results are given in Chapter 9. Chapter 10 is about Serre's intersection conjecture. The graded case is fully exposed. The last chapter introduces the reader to Fitting ideals and McRae invariants.
This undergraduate textbook on Linear Algebra and n-Dimensional Geometry, in a self-teaching style, is invaluable for sophomore level undergraduates in mathematics, engineering, business, and the sciences. These are classical subjects on which there are many mathematics books in theorem-proof style, but this unique volume has its focus on developing the mathematical modeling as well as computational and algorithmic skills in students at this level. The explanations in this book are detailed, lucid, and supported with numerous well-constructed examples to capture the interest and encourage the student to master the material.
This second volume introduces the concept of shemes, reviews some
commutative algebra and introduces projective schemes. The
finiteness theorem for coherent sheaves is proved, here again the
techniques of homological algebra and sheaf cohomology are needed.
In the last two chapters, projective curves over an arbitrary
ground field are discussed, the theory of Jacobians is developed,
and the existence of the Picard scheme is proved.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Don't let quadratic equations make you irrationalIf you are absolutely confused by absolute value equations, or you think parabolas are short moralstories, College Algebra DeMYSTiFied, Second Edition is your solution to mastering the topic's concepts and theories at your own pace. This thoroughly revised and updated guide eases you into the subject, beginning with the math fundamentals then introducing you to this advancedform of algebra. As you progress, you will learn howto simplify rational expressions, divide complex numbers, and solve quadratic equations. You will understand the difference between odd and even functions and no longer be confused by the multiplicity of zeros. Detailed examples make it easy to understand the material, and end-of-chapterquizzes and a final exam help reinforce key ideas. It's a no-brainer! You'll learn about: The x-y coordinate plane Lines and intercepts The FOIL method Functions Nonlinear equations Graphs of functions Exponents and logarithms Simple enough for a beginner, but challenging enough for an advanced student, College Algebra DeMYSTiFieD, Second Edition is your shortcut to a working knowledge of this engaging subject. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Linear Algebra: Core Topics For The…
Dragu Atanasiu, Piotr Mikusinski
Hardcover
R2,845
Discovery Miles 28 450
|