![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
This book offers an introduction to the theory of lie groups and their representations. It covers the essentials of the subject. Starting from basic undergraduate mathematics, it proceeds through the fundamentals of Lie Theory up to topics in representation theory, such as the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
'I like the authorsaEURO (TM) taste in footnotes, what with their frequent emphasis on history, i.e. the minutiae of the lives of many mathematicians appearing in these pages. Their remarks add a particular dimension of fun and pleasure to what I think is a very good book. ItaEURO (TM)s pitched at the right level, it does a lot of serious stuff in preparation for what is coming the studentsaEURO (TM) way in the future, and it does it well.'MAA ReviewsThis comprehensive two-volume book deals with algebra, broadly conceived. Volume 1 (Chapters 1-6) comprises material for a first year graduate course in algebra, offering the instructor a number of options in designing such a course. Volume 1, provides as well all essential material that students need to prepare for the qualifying exam in algebra at most American and European universities. Volume 2 (Chapters 7-13) forms the basis for a second year graduate course in topics in algebra. As the table of contents shows, that volume provides ample material accommodating a variety of topics that may be included in a second year course. To facilitate matters for the reader, there is a chart showing the interdependence of the chapters.
Under intense scrutiny for the last few decades, Multiple Objective Decision Making (MODM) has been useful for dealing with the multiple-criteria decisions and planning problems associated with many important applications in fields including management science, engineering design, and transportation. Rough set theory has also proved to be an effective mathematical tool to counter the vague description of objects in fields such as artificial intelligence, expert systems, civil engineering, medical data analysis, data mining, pattern recognition, and decision theory. Rough Multiple Objective Decision Making is perhaps the first book to combine state-of-the-art application of rough set theory, rough approximation techniques, and MODM. It illustrates traditional techniques-and some that employ simulation-based intelligent algorithms-to solve a wide range of realistic problems. Application of rough theory can remedy two types of uncertainty (randomness and fuzziness) which present significant drawbacks to existing decision-making methods, so the authors illustrate the use of rough sets to approximate the feasible set, and they explore use of rough intervals to demonstrate relative coefficients and parameters involved in bi-level MODM. The book reviews relevant literature and introduces models for both random and fuzzy rough MODM, applying proposed models and algorithms to problem solutions. Given the broad range of uses for decision making, the authors offer background and guidance for rough approximation to real-world problems, with case studies that focus on engineering applications, including construction site layout planning, water resource allocation, and resource-constrained project scheduling. The text presents a general framework of rough MODM, including basic theory, models, and algorithms, as well as a proposed methodological system and discussion of future research.
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
This book examines some aspects of homogeneous Banach algebras and related topics to illustrate various methods used in several classes of group algebras. It guides the reader toward some of the problems in harmonic analysis such as the problems of factorizations and closed subalgebras.
This book examines the notions of dimension and decomposition for module categories. It discusses some basic properties of quasidecomposition functions and the complete lattice of all quasidecomposition functions taking values in a fixed given lattice.
"Presenting the proceedings of a conference held recently at Northwestern University, Evanston, Illinois, on the occasion of the retirement of noted mathematician Daniel Zelinsky, this novel reference provides up-to-date coverage of topics in commutative and noncommutative ring extensions, especially those involving issues of separability, Galois theory, and cohomology."
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r3t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy.
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge (most of it from the authors' own work) about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems.
This engaging review guide and workbook is the ideal tool for sharpening your Algebra II skills! This review guide and workbook will help you strengthen your Algebra II knowledge, and it will enable you to develop new math skills to excel in your high school classwork and on standardized tests. Clear and concise explanations will walk you step by step through each essential math concept. 500 practical review questions, in turn, provide extensive opportunities for you to practice your new skills. If you are looking for material based on national or state standards, this book is your ideal study tool! Features: *Aligned to national standards, including the Common Core State Standards, as well as the standards of non-Common Core states and Canada*Designed to help you excel in the classroom and on standardized tests*Concise, clear explanations offer step-by-step instruction so you can easily grasp key concepts*You will learn how to apply Algebra II to practical situations*500 review questions provide extensive opportunities for you to practice what you've learned
Applied Differential Equations with Boundary Value Problems presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. This new edition of the author's popular textbook adds coverage of boundary value problems. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.
This book helps students explore Fourier analysis and its related topics, helping them appreciate why it pervades many fields of mathematics, science, and engineering. This introductory textbook was written with mathematics, science, and engineering students with a background in calculus and basic linear algebra in mind. It can be used as a textbook for undergraduate courses in Fourier analysis or applied mathematics, which cover Fourier series, orthogonal functions, Fourier and Laplace transforms, and an introduction to complex variables. These topics are tied together by the application of the spectral analysis of analog and discrete signals, and provide an introduction to the discrete Fourier transform. A number of examples and exercises are provided including implementations of Maple, MATLAB, and Python for computing series expansions and transforms. After reading this book, students will be familiar with: * Convergence and summation of infinite series * Representation of functions by infinite series * Trigonometric and Generalized Fourier series * Legendre, Bessel, gamma, and delta functions * Complex numbers and functions * Analytic functions and integration in the complex plane * Fourier and Laplace transforms. * The relationship between analog and digital signals Dr. Russell L. Herman is a professor of Mathematics and Professor of Physics at the University of North Carolina Wilmington. A recipient of several teaching awards, he has taught introductory through graduate courses in several areas including applied mathematics, partial differential equations, mathematical physics, quantum theory, optics, cosmology, and general relativity. His research interests include topics in nonlinear wave equations, soliton perturbation theory, fluid dynamics, relativity, chaos and dynamical systems.
Elementary Linear Algebra is written for the first undergraduate course. The book focuses on the importance of linear algebra in many disciplines such as engineering, economics, statistics, and computer science. The text reinforces critical ideas and lessons of traditional topics. More importantly, the book is written in a manner that deeply ingrains computational methods.
This volume features selected, refereed papers on various aspects of statistics, matrix theory and its applications to statistics, as well as related numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributions were originally presented at the 25th International Workshop on Matrices and Statistics (IWMS 2016), held in Funchal (Madeira), Portugal on June 6-9, 2016. The IWMS workshop series brings together statisticians, computer scientists, data scientists and mathematicians, helping them better understand each other's tools, and fostering new collaborations at the interface of matrix theory and statistics.
This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28-November 2, 2018.
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained.
This book presents an introduction to variational analysis, a field which unifies theories and techniques developed in calculus of variations, optimization, and control, and covers convex analysis, nonsmooth analysis, and set-valued analysis. It focuses on problems with constraints, the analysis of which involves set-valued mappings and functions that are not differentiable. Applications of variational analysis are interdisciplinary, ranging from financial planning to steering a flying object. The book is addressed to graduate students, researchers, and practitioners in mathematical sciences, engineering, economics, and finance. A typical reader of the book should be familiar with multivariable calculus and linear algebra. Some basic knowledge in optimization, control, and elementary functional analysis is desirable, but all necessary background material is included in the book.
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori's abelian category of mixed motives. It develops Nori's approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori's unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
This monograph provides a brief exposition of automorphic forms of weight 1 and their applications to arithmetic, especially to Galois representations. One of the outstanding problems in arithmetic is a generalization of class field theory to non-abelian Galois extension of number fields. In this volume, we discuss some relations between this problem and cusp forms of weight 1. |
You may like...
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
|