![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
This book is a compilation of the most important and widely applicable methods for evaluating and approximating integrals. It is an indispensable time saver for engineers and scientists needing to evaluate integrals in their work. From the table of contents: - Applications of Integration - Concepts and Definitions - Exact Analytical Methods - Approximate Analytical Methods - Numerical Methods: Concepts - Numerical Methods: Techniques
The first unified, in-depth discussion of the now classical Gelfand-Naimark theorems, thiscomprehensive text assesses the current status of modern analysis regarding both Banachand C*-algebras.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems focuses on general theoryand basic properties in accordance with readers' needs ... provides complete proofs of theGelfand-Naimark theorems as well as refinements and extensions of the original axioms. . . gives applications of the theorems to topology, harmonic analysis. operator theory.group representations, and other topics ... treats Hermitian and symmetric *-algebras.algebras with and without identity, and algebras with arbitrary (possibly discontinuous)involutions . . . includes some 300 end-of-chapter exercises . . . offers appendices on functionalanalysis and Banach algebras ... and contains numerous examples and over 400 referencesthat illustrate important concepts and encourage further research.Characterizations of C*-Algebras: The Gelfand-Naimark Theorems is an ideal text for graduatestudents taking such courses as The Theory of Banach Algebras and C*-Algebras: inaddition , it makes an outstanding reference for physicists, research mathematicians in analysis,and applied scientists using C*-algebras in such areas as statistical mechanics, quantumtheory. and physical chemistry.
This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients
This textbook is designed for students with at least one solid semester of abstract algebra,some linear algebra background, and no previous knowledge of module theory. Modulesand the Structure of Rings details the use of modules over a ring as a means of consideringthe structure of the ring itself--explaining the mathematics and "inductivereasoning" used in working on ring theory challenges and emphasizing modules insteadof rings.Stressing the inductive aspect of mathematical research underlying the formal deductivestyle of the literature, this volume offers vital background on current methods for solvinghard classification problems of algebraic structures. Written in an informal butcompletely rigorous style, Modules and the Structure of Rings clarifies sophisticatedproofs ... avoids the formalism of category theory ... aids independent study or seminarwork ... and supplies end-of-chapter problems.This book serves as an excellent primary.text for upper-level undergraduate and graduatestudents in one-semester courses on ring or module theory-laying a foundation formore advanced study of homological algebra or module theory.
A comprehensive study of the main research done in polynomial identities over the last 25 years, including Kemer's solution to the Specht problem in characteristic O and examples in the characteristic p situation. The authors also cover codimension theory, starting with Regev's theorem and continuing through the Giambruno-Zaicev exponential rank. The "best" proofs of classical results, such as the existence of central polynomials, the tensor product theorem, the nilpotence of the radical of an affine PI-algebra, Shirshov's theorem, and characterization of group algebras with PI, are presented.
This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.
Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0. The book first discusses the theory needed for Kemer's proof, including the featured role of Grassmann algebra and the translation to superalgebras. The authors develop Kemer polynomials for arbitrary varieties as tools for proving diverse theorems. They also lay the groundwork for analogous theorems that have recently been proved for Lie algebras and alternative algebras. They then describe counterexamples to Specht's conjecture in characteristic p as well as the underlying theory. The book also covers Noetherian PI-algebras, Poincare-Hilbert series, Gelfand-Kirillov dimension, the combinatoric theory of affine PI-algebras, and homogeneous identities in terms of the representation theory of the general linear group GL. Through the theory of Kemer polynomials, this edition shows that the techniques of finite dimensional algebras are available for all affine PI-algebras. It also emphasizes the Grassmann algebra as a recurring theme, including in Rosset's proof of the Amitsur-Levitzki theorem, a simple example of a finitely based T-ideal, the link between algebras and superalgebras, and a test algebra for counterexamples in characteristic p.
Advances in Queueing Theory and Network Applications presents several useful mathematical analyses in queueing theory and mathematical models of key technologies in wired and wireless communication networks such as channel access controls, Internet applications, topology construction, energy saving schemes, and transmission scheduling. In sixteen high quality chapters, this work provides novel ideas, new analytical models, and simulation and experimental results by experts in the field of queueing theory and network applications. The text serves as a state-of-the-art reference for a wide range of researchers and engineers engaged in the fields of queueing theory and network applications, and can also serve as supplemental material for advanced courses in operations research, queueing theory, performance analysis, traffic theory, as well as theoretical design and management of communication networks.
Sir William Rowan Hamilton was a genius, and will be remembered for his significant contributions to physics and mathematics. The Hamiltonian, which is used in quantum physics to describe the total energy of a system, would have been a major achievement for anyone, but Hamilton also invented quaternions, which paved the way for modern vector analysis. Quaternions are one of the most documented inventions in the history of mathematics, and this book is about their invention, and how they are used to rotate vectors about an arbitrary axis. Apart from introducing the reader to the features of quaternions and their associated algebra, the book provides valuable historical facts that bring the subject alive. Quaternions for Computer Graphics introduces the reader to quaternion algebra by describing concepts of sets, groups, fields and rings. It also includes chapters on imaginary quantities, complex numbers and the complex plane, which are essential to understanding quaternions. The book contains many illustrations and worked examples, which make it essential reading for students, academics, researchers and professional practitioners.
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Written by an algebraic topologist motivated by his own desire to learn, this well-written book represents the compilation of the most essential and interesting results and methods in the theory of polynomial invariants of finite groups. From the table of contents: - Invariants and Relative Invariants - Finite Generation of Invariants - Construction of Invariants - Poincare Series - Dimension Theoretic Properties of Rings of Invariants - Homological Properties of Invariants - Groups Generated by Reflections - Modular Invariants - Polynomial Tensor Exterior Algebras - Invariant Theory and Algebraic Topology - The Steenrod Algebra and Modular Invariant Theory
The Geometry Toolbox takes a novel and particularly visual approach to teaching the basic concepts of two- and three-dimensional geometry. It explains the geometry essential for today's computer modeling, computer graphics, and animation systems. While the basic theory is completely covered, the emphasis of the book is not on abstract proofs but rather on examples and algorithms. The Geometry Toolbox is the ideal text for professionals who want to get acquainted with the latest geometric tools. The chapters on basic curves and surfaces form an ideal stepping stone into the world of graphics and modeling. It is also a unique textbook for a modern introduction to linear algebra and matrix theory.
Qualitative Estimates For Partial Differential Equations: An Introduction describes an approach to the use of partial differential equations (PDEs) arising in the modelling of physical phenomena. It treats a wide range of differential inequality techniques applicable to problems arising in engineering and the natural sciences, including fluid and solid mechanics, physics, dynamics, biology, and chemistry. The book begins with an elementary discussion of the fundamental principles of differential inequality techniques for PDEs arising in the solution of physical problems, and then shows how these are used in research. Qualitative Estimates For Partial Differential Equations: An Introduction is an ideal book for students, professors, lecturers, and researchers who need a comprehensive introduction to qualitative methods for PDEs arising in engineering and the natural sciences.
This upper-level undergraduate textbook provides a modern view of algebra with an eye to new applications that have arisen in recent years. A rigorous introduction to basic number theory, rings, fields, polynomial theory, groups, algebraic geometry and elliptic curves prepares students for exploring their practical applications related to storing, securing, retrieving and communicating information in the electronic world. It will serve as a textbook for an undergraduate course in algebra with a strong emphasis on applications. The book offers a brief introduction to elementary number theory as well as a fairly complete discussion of major algebraic systems (such as rings, fields, and groups) with a view of their use in bar coding, public key cryptosystems, error-correcting codes, counting techniques, and elliptic key cryptography. This is the only entry level text for algebraic systems that includes an extensive introduction to elliptic curves, a topic that has leaped to prominence due to its importance in the solution of Fermat's Last Theorem and its incorporation into the rapidly expanding applications of elliptic curve cryptography in smart cards. Computer science students will appreciate the strong emphasis on the theory of polynomials, algebraic geometry and Groebner bases. The combination of a rigorous introduction to abstract algebra with a thorough coverage of its applications makes this book truly unique.
This volume publishes key proceedings from the recent International Conference on Hopf Algebras held at DePaul University, Chicago, Illinois. With contributions from leading researchers in the field, this collection deals with current topics ranging from categories of infinitesimal Hopf modules and bimodules to the construction of a Hopf algebraic Morita invariant. It uses the newly introduced theory of bi-Frobenius algebras to investigate a notion of group-like algebras and summarizes results on the classification of Hopf algebras of dimension pq. It also explores pre-Lie, dendriform, and Nichols algebras and discusses support cones for infinitesimal group schemes.
Filled with practical examples, Quasilinear Hyperbolic Systems, Compressible Flows, and Waves presents a self-contained discussion of quasilinear hyperbolic equations and systems with applications. It emphasizes nonlinear theory and introduces some of the most active research in the field. After linking continuum mechanics and quasilinear partial differential equations, the book discusses the scalar conservation laws and hyperbolic systems in two independent variables. Using the method of characteristics and singular surface theory, the author then presents the evolutionary behavior of weak and mild discontinuities in a quasilinear hyperbolic system. He also explains how to apply weakly nonlinear geometrical optics in nonequilibrium and stratified gas flows and demonstrates the power, generality, and elegance of group theoretic methods for solving Euler equations of gasdynamics involving shocks. The final chapter deals with the kinematics of a shock of arbitrary strength in three dimensions. With a focus on physical applications, this text takes readers on a journey through this fascinating area of applied mathematics. It provides the essential mathematical concepts and techniques to understand the phenomena from a theoretical standpoint and to solve a variety of physical problems.
Noncommutative Geometry and Cayley-smooth Orders explains the theory of Cayley-smooth orders in central simple algebras over function fields of varieties. In particular, the book describes the etale local structure of such orders as well as their central singularities and finite dimensional representations. After an introduction to partial desingularizations of commutative singularities from noncommutative algebras, the book presents the invariant theoretic description of orders and their centers. It proceeds to introduce etale topology and its use in noncommutative algebra as well as to collect the necessary material on representations of quivers. The subsequent chapters explain the etale local structure of a Cayley-smooth order in a semisimple representation, classify the associated central singularity to smooth equivalence, describe the nullcone of these marked quiver representations, and relate them to the study of all isomorphism classes of n-dimensional representations of a Cayley-smooth order. The final chapters study Quillen-smooth algebras via their finite dimensional representations. Noncommutative Geometry and Cayley-smooth Orders provides a gentle introduction to one of mathematics' and physics' hottest topics.
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal mapping properties, rather than by constructions whose technical details are irrelevant. Addresses Common Curricular Weaknesses In addition to standard introductory material on the subject, such as Lagrange's and Sylow's theorems in group theory, the text provides important specific illustrations of general theory, discussing in detail finite fields, cyclotomic polynomials, and cyclotomic fields. The book also focuses on broader background, including brief but representative discussions of naive set theory and equivalents of the axiom of choice, quadratic reciprocity, Dirichlet's theorem on primes in arithmetic progressions, and some basic complex analysis. Numerous worked examples and exercises throughout facilitate a thorough understanding of the material.
Near Rings, Fuzzy Ideals, and Graph Theory explores the relationship between near rings and fuzzy sets and between near rings and graph theory. It covers topics from recent literature along with several characterizations. After introducing all of the necessary fundamentals of algebraic systems, the book presents the essentials of near rings theory, relevant examples, notations, and simple theorems. It then describes the prime ideal concept in near rings, takes a rigorous approach to the dimension theory of N-groups, gives some detailed proofs of matrix near rings, and discusses the gamma near ring, which is a generalization of both gamma rings and near rings. The authors also provide an introduction to fuzzy algebraic systems, particularly the fuzzy ideals of near rings and gamma near rings. The final chapter explains important concepts in graph theory, including directed hypercubes, dimension, prime graphs, and graphs with respect to ideals in near rings. Near ring theory has many applications in areas as diverse as digital computing, sequential mechanics, automata theory, graph theory, and combinatorics. Suitable for researchers and graduate students, this book provides readers with an understanding of near ring theory and its connection to fuzzy ideals and graph theory.
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results. The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson's convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem. Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation includes more than 500 landmark and up-to-date references providing direction for further research.
Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix functions and apply the formulas to matrices arising in a demographic setting, including the class of Leslie matrices. With a focus on Markov chains, the text shows how the group inverse of an appropriate M-matrix is used in the perturbation analysis of the stationary distribution vector as well as in the derivation of a bound for the asymptotic convergence rate of the underlying Markov chain. It also illustrates how to use the group inverse to compute and analyze the mean first passage matrix for a Markov chain. The final chapters focus on the Laplacian matrix for an undirected graph and compare approaches for computing the group inverse. Collecting diverse results into a single volume, this self-contained book emphasizes the connections between problems arising in Markov chains, Perron eigenvalue analysis, and spectral graph theory. It shows how group inverses offer valuable insight into each of these areas.
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.
Boolean algebras have historically played a special role in the development of the theory of general or "universal" algebraic systems, providing important links between algebra and analysis, set theory, mathematical logic, and computer science. It is not surprising then that focusing on specific properties of Boolean algebras has lead to new directions in universal algebra. In the first unified study of polynomial completeness, Polynomial Completeness in Algebraic Systems focuses on and systematically extends another specific property of Boolean algebras: the property of affine completeness. The authors present full proof that all affine complete varieties are congruence distributive and that they are finitely generated if and only if they can be presented using only a finite number of basic operations. In addition to these important findings, the authors describe the different relationships between the properties of lattices of equivalence relations and the systems of functions compatible with them. An introductory chapter surveys the appropriate background material, exercises in each chapter allow readers to test their understanding, and open problems offer new research possibilities. Thus Polynomial Completeness in Algebraic Systems constitutes an accessible, coherent presentation of this rich topic valuable to both researchers and graduate students in general algebraic systems. |
![]() ![]() You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,069
Discovery Miles 10 690
Cyclic Modules and the Structure of…
S.K. Jain, Ashish K. Srivastava, …
Hardcover
R5,490
Discovery Miles 54 900
Krylov Subspace Methods - Principles and…
Joerg Liesen, Zdenek Strakos
Hardcover
R3,619
Discovery Miles 36 190
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
|