![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra > General
The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers."
This volume is based on lectures on division algebras given at a conference held at Colorado State University. Although division algebras are a very classical object, this book presents this ""classical"" material in a new way, highlighting current approaches and new theorems, and illuminating the connections with a variety of areas in mathematics.
Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups. This new edition of a widely adopted textbook covers applications from biology, science, and engineering. It offers numerous updates based on feedback from first edition adopters, as well as improved and simplified proofs of a number of important theorems. Many new exercises have been added, while new study projects examine skewfields, quaternions, and octonions. The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. These three chapters provide a quick introduction to algebra, sufficient to exhibit irrational numbers or to gain a taste of cryptography. Chapters four through seven cover abstract groups and monoids, orthogonal groups, stochastic matrices, Lagrange's theorem, groups of units of monoids, homomorphisms, rings, and integral domains. The first seven chapters provide basic coverage of abstract algebra, suitable for a one-semester or two-quarter course. Each chapter includes exercises of varying levels of difficulty, chapter notes that point out variations in notation and approach, and study projects that cover an array of applications and developments of the theory. The final chapters deal with slightly more advanced topics, suitable for a second-semester or third-quarter course. These chapters delve deeper into the theory of rings, fields, and groups. They discuss modules, including vector spaces and abelian groups, group theory, and quasigroups. This textbook is suitable for use in an undergraduate course on abstract algebra for mathematics, computer science, and education majors, along with students from other STEM fields.
The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors' experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida's CLAST exam or similar core requirements.
This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.
This book is a collection of a series of lectures given by Prof. V Kac at Tata Institute, India in Dec '85 and Jan '86. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite-dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These algebras appear in the lectures twice, in the reduction theory of soliton equations (KP KdV) and in the Sugawara construction as the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite-dimensional Lie algebras; and to physicists, this theory is turning into an important component of such domains of theoretical physics as soliton theory, theory of two-dimensional statistical models, and string theory.
This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.
This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The theoretical results are derived using the physical phenomena as a starting point. This inductive approach allows a deep understanding of the methods used for solving problems in this field. This second, revised edition is expanded with biographical notes contextualizing the main results in quantum field theory.
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.
This book studies the universal constructions and properties in categories of commutative algebras, bringing out the specific properties that make commutative algebra and algebraic geometry work. Two universal constructions are presented and used here for the first time. The author shows that the concepts and constructions arising in commutative algebra and algebraic geometry are not bound so tightly to the absolute universe of rings, but possess a universality that is independent of them and can be interpreted in various categories of discourse. This brings new flexibility to classical commutative algebra and affords the possibility of extending the domain of validity and the application of the vast number of results obtained in classical commutative algebra. This innovative and original work will interest mathematicians in a range of specialities, including algebraists, categoricians, and algebraic geometers.
This book presents an upper level text on semilinear evolutionary partial differential equations aimed at the graduate and postgraduate level. Cazenave and Haraux present in a self-contained way, the typical basic properties of solutions to semi-linear evolutionary partial differential equations, with special emphasis on global properties. The main objective of this book is to provide a didactic approach to the subject , and the main readership will be graduate students in mathematical analysis, as well as professional applied mathematicians.
Basic Math & Pre-Algebra For Dummies, 2nd Edition (9781119293637) was previously published as Basic Math & Pre-Algebra For Dummies, 2nd Edition (9781118791981). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Tips for simplifying tricky basic math and pre-algebra operations Whether you're a student preparing to take algebra or a parent who wants or needs to brush up on basic math, this fun, friendly guide has the tools you need to get in gear. From positive, negative, and whole numbers to fractions, decimals, and percents, you'll build necessary math skills to tackle more advanced topics, such as imaginary numbers, variables, and algebraic equations. Explanations and practical examples that mirror today's teaching methods Relevant cultural vernacular and references Standard For Dummiesmaterials that match the current standard and design Basic Math & Pre-Algebra For Dummies takes the intimidation out of tricky operations and helps you get ready for algebra!
The topic of special functions, normally presented as a mere collection of functions exhibiting particular properties, is treated from a fresh and unusual perspective in this book. The authors have based the special functions on the theory of second-order ordinary differential equations in the complex domain. Several physical applications are presented. Numerous tables and figures will help the reader find his way through the subject.
Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design. Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented. The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.
In this book the authors try to bridge the gap between the treatments of matrix theory and linear algebra. It is aimed at graduate and advanced undergraduate students seeking a foundation in mathematics, computer science, or engineering. It will also be useful as a reference book for those working on matrices and linear algebra for use in their scientific work.
This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.
Cellular automata were introduced in the first half of the last century by John von Neumann who used them as theoretical models for self-reproducing machines. The authors present a self-contained exposition of the theory of cellular automata on groups and explore its deep connections with recent developments in geometric group theory, symbolic dynamics, and other branches of mathematics and theoretical computer science. The topics treated include in particular the Garden of Eden theorem for amenable groups, and the Gromov-Weiss surjunctivity theorem as well as the solution of the Kaplansky conjecture on the stable finiteness of group rings for sofic groups. The volume is entirely self-contained, with 10 appendices and more than 300 exercises, and appeals to a large audience including specialists as well as newcomers in the field. It provides a comprehensive account of recent progress in the theory of cellular automata based on the interplay between amenability, geometric and combinatorial group theory, symbolic dynamics and the algebraic theory of group rings which are treated here for the first time in book form.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
Thinking Algebraically presents the insights of abstract algebra in a welcoming and accessible way. It succeeds in combining the advantages of rings-first and groups-first approaches while avoiding the disadvantages. After an historical overview, the first chapter studies familiar examples and elementary properties of groups and rings simultaneously to motivate the modern understanding of algebra. The text builds intuition for abstract algebra starting from high school algebra. In addition to the standard number systems, polynomials, vectors, and matrices, the first chapter introduces modular arithmetic and dihedral groups. The second chapter builds on these basic examples and properties, enabling students to learn structural ideas common to rings and groups: isomorphism, homomorphism, and direct product. The third chapter investigates introductory group theory. Later chapters delve more deeply into groups, rings, and fields, including Galois theory, and they also introduce other topics, such as lattices. The exposition is clear and conversational throughout. The book has numerous exercises in each section as well as supplemental exercises and projects for each chapter. Many examples and well over 100 figures provide support for learning. Short biographies introduce the mathematicians who proved many of the results. The book presents a pathway to algebraic thinking in a semester- or year-long algebra course.
Highly topical and original monograph, introducing the author's work on the Riemann zeta function and its adelic interpretation of interest to a wide range of mathematicians and physicists.
This book contains the proceedings of the Fifth International Conference on Noncommutative Rings and their Applications, held from June 12-15, 2017, at the University of Artois, Lens, France. The papers are related to noncommutative rings, covering topics such as: ring theory, with both the elementwise and more structural approaches developed; module theory with popular topics such as automorphism invariance, almost injectivity, ADS, and extending modules; and coding theory, both the theoretical aspects such as the extension theorem and the more applied ones such as Construction A or Reed-Muller codes. Classical topics like enveloping skewfields, weak Hopf algebras, and tropical algebras are also presented.
This volume contains the proceedings of the scientific session ``Hopf Algebras and Tensor Categories'', held from July 27-28, 2017, at the Mathematical Congress of the Americas in Montreal, Canada. Papers highlight the latest advances and research directions in the theory of tensor categories and Hopf algebras. Primary topics include classification and structure theory of tensor categories and Hopf algebras, Gelfand-Kirillov dimension theory for Nichols algebras, module categories and weak Hopf algebras, Hopf Galois extensions, graded simple algebras, and bialgebra coverings.
Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL. Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications. The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB(r) source code, data, and other materials are available at www.comp.hkbu.edu.hk/ haiping/MSL.html"
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11-16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope.
A first course with applications to differential equations This text provides ample coverage of major topics traditionally taught in a first course on linear algebra: linear spaces, independence, orthogonality, linear transformations, matrices, eigenvalues, and quadratic forms. The last three chapters describe applications to differential equations. Although much of the material has been extracted from the author's two-volume Calculus, the present text is designed to be independent of the Calculus volumes. Some topics have been revised or rearranged, and some new material has been added (for example, the triangularization theorem and the Jordan normal form). A review chapter contains pre-calculus prerequisites needed for the material on linear algebra in Chapters 1 through 7 and calculus prerequisites needed for the applications to differential equations in Chapters 8 through 10. Special features
|
![]() ![]() You may like...
Turbulence and Interactions…
Michel O. Deville, Vincent Couaillier, …
Hardcover
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Stable Numerical Schemes for Fluids…
Cornel Marius Murea
Hardcover
Fluvial-Tidal Sedimentology, Volume 68
Philip J. Ashworth, James L. Best, …
Hardcover
|