![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra > General
The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra g of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras - such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations - simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.
The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra g of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras - such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations - simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.
This book discusses the application of independent continuous mapping method in predicting and the optimization of the mechanical performance of buckling with displacement, stress and static constrains. Each model is explained by mathematical theories and followed by simulation with frequently-used softwares. With abundant project data, the book is an essential reference for mechanical engineers, structural engineers and industrial designers.
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
This monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models. The approach adopted in the monograph is based on the following paradigms: * Examine the existence of spiky steady states in reaction-diffusion systems and select as observable patterns only the stable ones * Begin by exploring spatially homogeneous two-component activator-inhibitor systems in one or two space dimensions * Extend the studies by considering extra effects or related systems, each motivated by their specific roles in developmental biology, such as spatial inhomogeneities, large reaction rates, altered boundary conditions, saturation terms, convection, many-component systems. Mathematical Aspects of Pattern Formation in Biological Systems will be of interest to graduate students and researchers who are active in reaction-diffusion systems, pattern formation and mathematical biology.
The concepts and theorems of advanced calculus combined with related computational methods are essential to understanding nearly all areas of quantitative science. Analysis in Vector Spaces presents the central results of this classic subject through rigorous arguments, discussions, and examples. The book aims to cultivate not only knowledge of the major theoretical results, but also the geometric intuition needed for both mathematical problem-solving and modeling in the formal sciences. The authors begin with an outline of key concepts, terminology, and notation and also provide a basic introduction to set theory, the properties of real numbers, and a review of linear algebra. An elegant approach to eigenvector problems and the spectral theorem sets the stage for later results on volume and integration. Subsequent chapters present the major results of differential and integral calculus of several variables as well as the theory of manifolds. Additional topical coverage includes: Sets and functions Real numbers Vector functions Normed vector spaces First- and higher-order derivatives Diffeomorphisms and manifolds Multiple integrals Integration on manifolds Stokes' theorem Basic point set topology Numerous examples and exercises are provided in each chapter to reinforce new concepts and to illustrate how results can be applied to additional problems. Furthermore, proofs and examples are presented in a clear style that emphasizes the underlying intuitive ideas. Counterexamples are provided throughout the book to warn against possible mistakes, and extensive appendices outline the construction of real numbers, include a fundamental result about dimension, and present general results about determinants. Assuming only a fundamental understanding of linear algebra and single variable calculus, Analysis in Vector Spaces is an excellent book for a second course in analysis for mathematics, physics, computer science, and engineering majors at the undergraduate and graduate levels. It also serves as a valuable reference for further study in any discipline that requires a firm understanding of mathematical techniques and concepts.
This book introduces the study of algebra induced by combinatorial objects called directed graphs. These graphs are used as tools in the analysis of graph-theoretic problems and in the characterization and solution of analytic problems. The book presents recent research in operator algebra theory connected with discrete and combinatorial mathematical objects. It also covers tools and methods from a variety of mathematical areas, including algebra, operator theory, and combinatorics, and offers numerous applications of fractal theory, entropy theory, K-theory, and index theory.
This volume, first published in 2000, presents a classical approach to the foundations and development of the geometry of vector fields, describing vector fields in three-dimensional Euclidean space, triply-orthogonal systems and applications in mechanics. Topics covered include Pfaffian forms, systems in n-dimensional space, and foliations and their Godbillion-Vey invariant. There is much interest in the study of geometrical objects in n-dimensional Euclidean space and this volume provides a useful and comprehensive presentation.
This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanta, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past - for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).
Outliers play an important, though underestimated, role in control engineering. Traditionally they are unseen and neglected. In opposition, industrial practice gives frequent examples of their existence and their mostly negative impacts on the control quality. The origin of outliers is never fully known. Some of them are generated externally to the process (exogenous), like for instance erroneous observations, data corrupted by control systems or the effect of human intervention. Such outliers appear occasionally with some unknow probability shifting real value often to some strange and nonsense value. They are frequently called deviants, anomalies or contaminants. In most cases we are interested in their detection and removal. However, there exists the second kind of outliers. Quite often strange looking data observations are not artificial data occurrences. They may be just representatives of the underlying generation mechanism being inseparable internal part of the process (endogenous outliers). In such a case they are not wrong and should be treated with cautiousness, as they may include important information about the dynamic nature of the process. As such they cannot be neglected nor simply removed. The Outlier should be detected, labelled and suitably treated. These activities cannot be performed without proper analytical tools and modeling approaches. There are dozens of methods proposed by scientists, starting from Gaussian-based statistical scoring up to data mining artificial intelligence tools. The research presented in this book presents novel approach incorporating non-Gaussian statistical tools and fractional calculus approach revealing new data analytics applied to this important and challenging task. The proposed book includes a collection of contributions addressing different yet cohesive subjects, like dynamic modelling, classical control, advanced control, fractional calculus, statistical analytics focused on an ultimate goal: robust and outlier-proof analysis. All studied problems show that outliers play an important role and classical methods, in which outlier are not taken into account, do not give good results. Applications from different engineering areas are considered such as semiconductor process control and monitoring, MIMO peltier temperature control and health monitoring, networked control systems, and etc.
Groups that are the product of two subgroups are of particular interest to group theorists. In what way is the structure of the product related to that of its subgroups? This monograph gives the first detailed account of the most important results that have been found about groups of this form over the past 35 years. Although the emphasis is on infinite groups, some relevant theorems about finite products of groups are also proved. The material presented will be of interest for research students and specialists in group theory. In particular, it can be used in seminars or to supplement a general group theory course. A special chapter on conjugacy and splitting theorems obtained by means of the cohomology of groups has never appeared in book form and should be of independent interest.
This book describes the solution of electrodynamic boundary problems, which arose in the practical life of a designer. Only a few problems can be solved analytically and some of these solutions are given in the book, for example, the computation of a strip line in a rectangular or circular cylinder capacitance. Practical lines' configurations require computational work. As the authors' practice shows, the use of Green functions, leading to singular integral equations, is a powerful and pretty universal method to solve different boundary problems, including electrodynamic ones. The book presents the results of computations of microstrip lines on magnetized (longitudinally and transversally) ferrite and semiconductor substrates taking into account all the geometric sizes. The properties of gyrotropic media are described in the book for the reader's convenience. The geometrical shape may be practically any. The integral equations are exact and give the proper field near the edges. Actually, the use of singular integral equations reduces the experimental verification to minimum. The book will be useful for students, engineers, designers and researchers. It contains a lot of computed results, which are verified experimentally and can be used immediately.
"Based on papers presented at a recent international conference on algebra and algebraic geometry held jointly in Antwerp and Brussels, Belgium. Presents both survey and research articles featuring new results from the intersection of algebra and geometry. "
We propose here a study of 'semiexact' and 'homological' categories as a basis for a generalised homological algebra. Our aim is to extend the homological notions to deeply non-abelian situations, where satellites and spectral sequences can still be studied.This is a sequel of a book on 'Homological Algebra, The interplay of homology with distributive lattices and orthodox semigroups', published by the same Editor, but can be read independently of the latter.The previous book develops homological algebra in p-exact categories, i.e. exact categories in the sense of Puppe and Mitchell - a moderate generalisation of abelian categories that is nevertheless crucial for a theory of 'coherence' and 'universal models' of (even abelian) homological algebra. The main motivation of the present, much wider extension is that the exact sequences or spectral sequences produced by unstable homotopy theory cannot be dealt with in the previous framework.According to the present definitions, a semiexact category is a category equipped with an ideal of 'null' morphisms and provided with kernels and cokernels with respect to this ideal. A homological category satisfies some further conditions that allow the construction of subquotients and induced morphisms, in particular the homology of a chain complex or the spectral sequence of an exact couple.Extending abelian categories, and also the p-exact ones, these notions include the usual domains of homology and homotopy theories, e.g. the category of 'pairs' of topological spaces or groups; they also include their codomains, since the sequences of homotopy 'objects' for a pair of pointed spaces or a fibration can be viewed as exact sequences in a homological category, whose objects are actions of groups on pointed sets.
This invaluable reference is the first to present the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area. A major trend in modern mathematics, inspired largely by physics, is toward noncommutative' or quantized' phenomena. In functional analysis, this has appeared notably under the name of operator spaces', which is a variant of Banach spaces which is particularly appropriate for solving problems concerning spaces or algebras of operators on Hilbert space arising in 'noncommutative mathematics'. The category of operator spaces includes operator algebras, selfadjoint (that is, C*-algebras) or otherwise. Also, most of the important modules over operator algebras are operator spaces. A common treatment of the subjects of C*-algebras, Non-selfadjoint operator algebras, and modules over such algebras (such as Hilbert C*-modules), together under the umbrella of operator space theory, is the main topic of the book. A general theory of operator algebras, and their modules, naturally develops out of the operator space methodology. Indeed, operator space theory is a sensitive enough medium to reflect accurately many important non-commutative phenomena. Using recent advances in the field, the book shows how the underlying operator space structure captures, very precisely, the profound relations between the algebraic and the functional analytic structures involved. The rich interplay between spectral theory, operator theory, C*-algebra and von Neumann algebra techniques, and theinflux of important ideas from related disciplines, such as pure algebra, Banach space theory, Banach algebras, and abstract function theory is highlighted. Each chapter ends with a lengthy section of notes containing a wealth of additional information.
Kasch Modules.- Compactness in Categories and Interpretations.- A Ring of Morita Context in Which Each Right Ideal is Weakly Self-injective.- Splitting Theorems and a Problem of Muller.- Decompositions of D1 Modules.- Right Cones in Groups.- On Extensions of Regular Rings of Finite Index by Central Elements.- Intersections of Modules.- Minimal Cogenerators Over Osofsky and Camillo Rings.- Uniform Modules Over Goldie Prime Serial Rings.- Co-Versus Contravariant Finiteness of Categories of Representations.- Monomials and the Lexicographic Order.- Rings Over Which Direct Sums of CS Modules Are CS.- Exchange Properties and the Total.- Local Bijective Gabriel Correspondence and Torsion Theoretic FBN Rings.- Normalizing Extensions and the Second Layer Condition.- Generators of Subgroups of Finite Index in GLm (?G).- Weak Relative Injective M-Subgenerated Modules.- Direct Product and Power Series Formations Over 2-Primal Rings.- Localization in Noetherian Rings.- Projective Dimension of Ideals in Von Neumann Regular Rings.- Homological Properties of Color Lie Superalgebras.- Indecomposable Modules Over Artinian Right Serial Rings.- Nonsingular Extending Modules.- Right Hereditary, Right Perfect Rings Are Semiprimary.- On the Endomorphism Ring of a Discrete Module: A Theorem of F. Kasch.- Nonsingular Rings with Finite Type Dimension.
This monograph is devoted to the study of Polygroup Theory. It begins with some basic results concerning group theory and algebraic hyperstructures, which represent the most general algebraic context, in which reality can be modeled. Most results on polygroups are collected in this book. Moreover, this monograph is the first book on this theory. The volume is highly recommended to theoreticians in pure and applied mathematics.
This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Normal 0 false false false Are you ready to ace calculus at the college level? With this book, you will be Professors often say "Students don't fail the calculus, they fail the algebra." In other words, even if you understand calculus, your algebra and trigonometry skills can hold you back. Here's a quick quiz--do you remember how to: Factor trinomials? Solve equations containing exponents and logs? Work with inverse trig functions? If not, that's where this book comes in handy "Just-in-Time" is designed to bolster the algebra and trigonometry skills you'll need while you study calculus. As you make your way through the course, "Just-in-Time" is with you every step of the way, showing you the exact algebra or trigonometry topics that you'll need and pointing out potential problem spots. The easy-to-use Table of Contents features the calculus subject listed directly across from the algebra/trigonometry skills needed to master that topic. Use this book as your study companion and put your anxiety to rest
This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practitioners in research and industry need a fundamental and sound understanding of the principles. This work presents the underlying physical foundations.
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
A generalization of Conventional Matrix Product (CMP), called the Semi-Tensor Product (STP), is proposed. It extends the CMP to two arbitrary matrices and maintains all fundamental properties of CMP. In addition, it has a pseudo-commutative property, which makes it more superior to CMP. The STP was proposed by the authors to deal with higher-dimensional data as well as multilinear mappings. After over a decade of development, STP has been proven to be a powerful tool in dealing with nonlinear and logical calculations. This book is a comprehensive introduction to the theory of STP and its various applications, including logical function, fuzzy control, Boolean networks, analysis and control of nonlinear systems, amongst others.
In this book we want to explore aspects of coherence in homological algebra, that already appear in the classical situation of abelian groups or abelian categories. Lattices of subobjects are shown to play an important role in the study of homological systems, from simple chain complexes to all the structures that give rise to spectral sequences. A parallel role is played by semigroups of endorelations.These links rest on the fact that many such systems, but not all of them, live in distributive sublattices of the modular lattices of subobjects of the system.The property of distributivity allows one to work with induced morphisms in an automatically consistent way, as we prove in a 'Coherence Theorem for homological algebra'. (On the contrary, a 'non-distributive' homological structure like the bifiltered chain complex can easily lead to inconsistency, if one explores the interaction of its two spectral sequences farther than it is normally done.)The same property of distributivity also permits representations of homological structures by means of sets and lattices of subsets, yielding a precise foundation for the heuristic tool of Zeeman diagrams as universal models of spectral sequences.We thus establish an effective method of working with spectral sequences, called 'crossword chasing', that can often replace the usual complicated algebraic tools and be of much help to readers that want to apply spectral sequences in any field.
On Convex Combinations of Unitary Operators in C*-Algebras.- Approximately Inner Derivations, Decompositions and Vector Fields of Simple C*-Algebras.- Derivations in Commutative C*-Algebras.- Representation of Quantum Groups.- Automorphism Groups and Covariant Irreducible Representations.- Proper Actions of Groups on C*-Algebras.- On the Baum-Connes Conjecture.- On Primitive Ideal Spaces of C*-Algebras over Certain Locally Compact Groupoids.- On Sequences of Jones' Projections.- The Powers' Binary Shifts on the Hyperfinite Factor of Type II1.- Index Theory for Type III Factors.- Relative Entropy of a Fixed Point Algebra.- Jones Index Theory for C*-Algebras.- Three Tensor Norms for Operator Spaces.- Extension Problems for Maps on Operator Systems.- Multivariable Toeplitz Operators and Index Theory.- On Maximality of Analytic Subalgebras Associated with Flow in von Neumann Algebras.- Reflections Relating a von Neumann Algebra and Its Commutant.- Normal AW*-Algebras.
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more." |
You may like...
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,089
Discovery Miles 30 890
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,317
Discovery Miles 53 170
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
View of Sir Isaac Newton's Philosophy
Henry 1694-1771 Pemberton
Hardcover
R1,017
Discovery Miles 10 170
|