Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Algebra > General
The topic of special functions, normally presented as a mere collection of functions exhibiting particular properties, is treated from a fresh and unusual perspective in this book. The authors have based the special functions on the theory of second-order ordinary differential equations in the complex domain. Several physical applications are presented. Numerous tables and figures will help the reader find his way through the subject.
Design of Observer-based Compensators facilitates and adds transparency to design in the frequency domain which is not as well-established among control engineers as time domain design. The presentation of the design procedures starts with a review of the time domain results; therefore, the book also provides quick access to state space methods for control system design. Frequency domain design of observer-based compensators of all orders is covered. The design of decoupling and disturbance rejecting controllers is presented, and solutions are given to the linear quadratic and the model matching problems. The pole assignment design is facilitated by a new parametric approach in the frequency domain. Anti-windup control is also investigated in the framework of the polynomial approach. The discrete-time results for disturbance rejection and linear quadratic control are also presented. The book contains worked examples that can easily be reproduced by the reader, and the results are illustrated by simulations.
Banach spaces and algebras are a key topic of pure mathematics.
Graham Allan's careful and detailed introductory account will prove
essential reading for anyone wishing to specialise in functional
analysis and is aimed at final year undergraduates or masters level
students. Based on the author's lectures to fourth year students at
Cambridge University, the book assumes knowledge typical of first
degrees in mathematics, including metric spaces, analytic topology,
and complex analysis. However, readers are not expected to be
familiar with the Lebesgue theory of measure and integration.
Cellular automata were introduced in the first half of the last century by John von Neumann who used them as theoretical models for self-reproducing machines. The authors present a self-contained exposition of the theory of cellular automata on groups and explore its deep connections with recent developments in geometric group theory, symbolic dynamics, and other branches of mathematics and theoretical computer science. The topics treated include in particular the Garden of Eden theorem for amenable groups, and the Gromov-Weiss surjunctivity theorem as well as the solution of the Kaplansky conjecture on the stable finiteness of group rings for sofic groups. The volume is entirely self-contained, with 10 appendices and more than 300 exercises, and appeals to a large audience including specialists as well as newcomers in the field. It provides a comprehensive account of recent progress in the theory of cellular automata based on the interplay between amenability, geometric and combinatorial group theory, symbolic dynamics and the algebraic theory of group rings which are treated here for the first time in book form.
Algebraic Structure of Lattice-Ordered Rings presents an introduction to the theory of lattice-ordered rings and some new developments in this area in the last 10-15 years. It aims to provide the reader with a good foundation in the subject, as well as some new research ideas and topic in the field.This book may be used as a textbook for graduate and advanced undergraduate students who have completed an abstract algebra course including general topics on group, ring, module, and field. It is also suitable for readers with some background in abstract algebra and are interested in lattice-ordered rings to use as a self-study book.The book is largely self-contained, except in a few places, and contains about 200 exercises to assist the reader to better understand the text and practice some ideas.
This book gives a self- contained treatment of linear algebra with many of its most important applications. It is very unusual if not unique in being an elementary book which does not neglect arbitrary fields of scalars and the proofs of the theorems. It will be useful for beginning students and also as a reference for graduate students and others who need an easy to read explanation of the important theorems of this subject.It presents a self- contained treatment of the algebraic treatment of linear differential equation which includes all proofs. It also contains many different proofs of the Cayley Hamilton theorem. Other applications include difference equations and Markov processes, the latter topic receiving a more thorough treatment than usual, including the theory of absorbing states. In addition it contains a complete introduction to the singular value decomposition and related topics like least squares and the pseudo-inverse.Most major topics receive more than one discussion, one in the text and others being outlined in the exercises. The book also gives directions for using maple in performing many of the difficult algorithms.
This is an introduction to the mathematical foundations of quantum field theory, using operator algebraic methods and emphasizing the link between the mathematical formulations and related physical concepts. It starts with a general probabilistic description of physics, which encompasses both classical and quantum physics. The basic key physical notions are clarified at this point. It then introduces operator algebraic methods for quantum theory, and goes on to discuss the theory of special relativity, scattering theory, and sector theory in this context.
Larson IS student success. INTERMEDIATE ALGEBRA: ALGEBRA WITHIN REACH, 6E, International Edition owes its success to the hallmark features for which the Larson team is known: learning by example, a straightforward and accessible writing style, emphasis on visualization through the use of graphs to reinforce algebraic and numeric solutions and to interpret data, and comprehensive exercise sets. These pedagogical features are carefully coordinated to ensure that students are better able to make connections between mathematical concepts and understand the content. With a bright, appealing design, the new Sixth Edition builds on the Larson tradition of guided learning by incorporating a comprehensive range of student success materials to help develop students' proficiency and conceptual understanding of algebra. The text also continues coverage and integration of geometry in examples and exercises.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
This book begins with a brief account of matrices and matrix algebra, and derives the theory of determinants by the aid of matrix notation, in an order suggested by a naturally alternating development of both subjects.
Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL. Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today s most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications. The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB(r) source code, data, and other materials are available at www.comp.hkbu.edu.hk/ haiping/MSL.html"
Highly topical and original monograph, introducing the author's work on the Riemann zeta function and its adelic interpretation of interest to a wide range of mathematicians and physicists.
Linear algebra provides the essential mathematical tools to tackle all the problems in Science. Introduction to Linear Algebra is primarily aimed at students in applied fields (e.g. Computer Science and Engineering), providing them with a concrete, rigorous approach to face and solve various types of problems for the applications of their interest. This book offers a straightforward introduction to linear algebra that requires a minimal mathematical background to read and engage with. Features Presented in a brief, informative and engaging style Suitable for a wide broad range of undergraduates Contains many worked examples and exercises
This is a matrix-oriented approach to linear algebra that covers the traditional material of the courses generally known as "Linear Algebra I" and "Linear Algebra II" throughout North America, but it also includes more advanced topics such as the pseudoinverse and the singular value decomposition that make it appropriate for a more advanced course as well. As is becoming increasingly the norm, the book begins with the geometry of Euclidean 3-space so that important concepts like linear combination, linear independence and span can be introduced early and in a "real" context. The book reflects the author's background as a pure mathematician - all the major definitions and theorems of basic linear algebra are covered rigorously - but the restriction of vector spaces to Euclidean n- space and linear transformations to matrices, for the most part, and the continual emphasis on the system Ax=b, make the book less abstract and more attractive to the students of today than some others. As the subtitle suggests, however, applications play an important role too. Coding theory and least squares are recurring themes. Other applications include electric circuits, Markov chains, quadratic forms and conic sections, facial recognition and computer graphics.
This is a matrix-oriented approach to linear algebra that covers the traditional material of the courses generally known as "Linear Algebra I" and "Linear Algebra II" throughout North America, but it also includes more advanced topics such as the pseudoinverse and the singular value decomposition that make it appropriate for a more advanced course as well. As is becoming increasingly the norm, the book begins with the geometry of Euclidean 3-space so that important concepts like linear combination, linear independence and span can be introduced early and in a "real" context. The book reflects the author's background as a pure mathematician - all the major definitions and theorems of basic linear algebra are covered rigorously - but the restriction of vector spaces to Euclidean n-space and linear transformations to matrices, for the most part, and the continual emphasis on the system Ax=b, make the book less abstract and more attractive to the students of today than some others. As the subtitle suggests, however, applications play an important role too. Coding theory and least squares are recurring themes. Other applications include electric circuits, Markov chains, quadratic forms and conic sections, facial recognition and computer graphics.
Tough Test Questions? Missed Lectures? Not Enough Time? Fortunately, there's Schaum's. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, sovled problems, and practice exercises to test your skills. This Schaum's Outline gives you: * 300 supplemental problems to reinforce knowledge* Additional new end of chapter problems and supplementary problems* New chapter on solving Higher Degree Equations* New chapter on Algebra for Calculus* Concise exaplanations of all intermediate algebra concepts* Support for all major textbooks for courses in Algebra PLUS: Access to revised Schaums.com website with access to 30 problem-solving videos, and more. Schaum's reinforces the main concepts required in your course and offers hundreds of practice questions to help you suceed. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines - Problem solved.
This book introduces the study of algebra induced by combinatorial objects called directed graphs. These graphs are used as tools in the analysis of graph-theoretic problems and in the characterization and solution of analytic problems. The book presents recent research in operator algebra theory connected with discrete and combinatorial mathematical objects. It also covers tools and methods from a variety of mathematical areas, including algebra, operator theory, and combinatorics, and offers numerous applications of fractal theory, entropy theory, K-theory, and index theory.
The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra g of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras - such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations - simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.
The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations.The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra g of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kashiwara and Miwa. The third is the unitary highest weight representations of the current (= affine Kac-Moody) algebras. These Lie algebras appear in the lectures in connection to the Sugawara construction, which is the main tool in the study of the fourth incarnation of the main idea, the theory of the highest weight representations of the Virasoro algebra. In particular, the book provides a complete proof of the Kac determinant formula, the key result in representation theory of the Virasoro algebra.The second edition of this book incorporates, as its first part, the largely unchanged text of the first edition, while its second part is the collection of lectures on vertex algebras, delivered by Professor Kac at the TIFR in January 2003. The basic idea of these lectures was to demonstrate how the key notions of the theory of vertex algebras - such as quantum fields, their normal ordered product and lambda-bracket, energy-momentum field and conformal weight, untwisted and twisted representations - simplify and clarify the constructions of the first edition of the book.This book should be very useful for both mathematicians and physicists. To mathematicians, it illustrates the interaction of the key ideas of the representation theory of infinite dimensional Lie algebras and of the theory of vertex algebras; and to physicists, these theories are turning into an important component of such domains of theoretical physics as soliton theory, conformal field theory, the theory of two-dimensional statistical models, and string theory.
Applied Statistics presents a thorough treatment of the methods of regression and analysis of variance. The book focuses on conceptual understandings of statistical methods in regression and analysis of variance as well as the use of statistical software to obtain correct results. Real data examples from many fields of study are used to motivate the presentation and illustrate the concepts and methods. Almost all of the examples in the book are accompanied with their corresponding SAS programs. The R programs are available on the following website: http: //people.cst.cmich.edu/famoy1kf/appliedstat. This textbook is user-friendly and simplifies the presentation of complicated material. Applied Statistics requires an understanding of introductory statistics courses and is suitable for both junior and senior undergraduate students
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
The set includes Linear Algebra: Ideas and Applications, 4th Edition and Solutions Manual to Accompany Linear Algebra: Ideas and Applications, 4th Edition . A unified introduction to linear algebra that reinforces and emphasizes a conceptual and hands-on understanding of the essential ideas. Promoting the development of intuition rather than the simple application of methods, this book successfully helps readers to understand not only how to implement a technique, but why its use is important. In addition, the author outlines an analytical, algebraic, and geometric discussion of the provided definitions, theorems, and proofs. For each concept, an abstract foundation is presented together with its computational output, and this parallel structure clearly and immediately illustrates the relationship between the theory and its appropriate applications. The Fourth Edition features new coverage on orthogonal wavelets, which is a cutting edge application of linear algebra that has only become prominent within the last 10 years. The Student Solutions Manual contains solutions to the odd numbered problems and is available to further aid in reader comprehension, and an Instructor's Solutions Manual (inclusive of suggested syllabi) is available via written request to the Publisher. Both the Student and Instructor Manuals also have been enhanced with further discussions of the applications sections, which is ideal for readers who wish to obtain a deeper knowledge than that provided by pure algorithmic approaches. A related website houses the referenced MATLAB code as well as full-color images of select figures.
This book introduces algebraic number theory through the problem of generalizing 'unique prime factorization' from ordinary integers to more general domains. Solving polynomial equations in integers leads naturally to these domains, but unique prime factorization may be lost in the process. To restore it, we need Dedekind's concept of ideals. However, one still needs the supporting concepts of algebraic number field and algebraic integer, and the supporting theory of rings, vector spaces, and modules. It was left to Emmy Noether to encapsulate the properties of rings that make unique prime factorization possible, in what we now call Dedekind rings. The book develops the theory of these concepts, following their history, motivating each conceptual step by pointing to its origins, and focusing on the goal of unique prime factorization with a minimum of distraction or prerequisites. This makes a self-contained easy-to-read book, short enough for a one-semester course.
Symbolic rewriting techniques are methods for deriving consequences from systems of equations, and are of great use when investigating the structure of the solutions. Such techniques appear in many important areas of research within computer algebra: a the Knuth-Bendix completion for groups, monoids and general term-rewriting systems, a the Buchberger algorithm for GrAbner bases, a the Ritt-Wu characteristic set method for ordinary differential equations, and a the Riquier-Janet method for partial differential equations. This volume contains invited and contributed papers to the Symbolic Rewriting Techniques workshop, which was held at the Centro Stefano Franscini in Ascona, Switzerland, from April 30 to May 4, 1995. That workshop brought together 40 researchers from various areas of rewriting techniques, the main goal being the investigation of common threads and methods. Following the workshops, each contribution was formally refereed and 14 papers were selected for publication.
Boost your chances of scoring higher at Algebra II Algebra II introduces students to complex algebra concepts in preparation for trigonometry and calculus. In this new edition of Algebra II Workbook For Dummies, high school and college students will work through the types of Algebra II problems they'll see in class, including systems of equations, matrices, graphs, and conic sections. Plus, the book now comes with free 1-year access to chapter quizzes online! A recent report by ACT shows that over a quarter of ACT-tested 2012 high school graduates did not meet any of the four college readiness benchmarks in mathematics, English, reading, and science. Algebra II Workbook For Dummies presents tricky topics in plain English and short lessons, with examples and practice at every step to help students master the essentials, setting them up for success with each new lesson. Tracks to a typical Algebra II class Can be used as a supplement to classroom learning or for test prep Includes plenty of practice and examples throughout Comes with free access to chapter quizzes online Get ready to take the intimidation out of Algebra II! |
You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,832
Discovery Miles 28 320
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
Linear Algebra - Pearson New…
John B. Fraleigh, Raymond Beauregard
Paperback
R2,214
Discovery Miles 22 140
|