![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > General
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.
This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups."
In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.
This is the softcover reprint of the 1974 English translation of the later chapters of Bourbaki 's Topologie Generale. Initial chapters study subgroups and quotients of R, real vector spaces and projective spaces, and additive groups Rn. Analogous properties are then studied for complex numbers. Later chapters illustrate the use of real numbers in general topology and discuss various topologies of function spaces and approximation of functions.
The winding number is one of the most basic invariants in topology. It measures the number of times a moving point $P$ goes around a fixed point $Q$, provided that $P$ travels on a path that never goes through $Q$ and that the final position of $P$ is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra), guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem), explain why every simple closed curve has an inside and an outside (the Jordan curve theorem), relate calculus to curvature and the singularities of vector fields (the Hopf index theorem), allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators), generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses. This book is published in cooperation with Mathematics Advanced Study Semesters.
These proceedings contain papers presented at the 8th Discrete Geometry for Computer Imagery conference, held 17-19, March 1999 at ESIEE, Marne-la- Vall ee. The domains of discrete geometry and computer imagery are closely related. Discrete geometry provides both theoretical and algorithmic models for the p- cessing, analysis and synthesis of images; in return computer imagery, in its variety of applications, constitutes a remarkable experimentational eld and is a source of challenging problems. The number of returning participants, the arrival each year of contributions from new laboratories and new researchers, as well as the quality and originality of the results have contributed to the success of the conference and are an - dication of the dynamism of this eld. The DGCI has become one of the major conferences related to this topic, including participating researchers and la- ratories from all over the world. Of the 41 papers received this year, 24 have been selected for presentation and 7 for poster sessions. In addition to these, four invited speakers have contributed to the conference. The site of Marne-la-Vall ee, just 20 min away from Paris, is particularly we- suited to hold the conference. Indeed, as a newly built city, it showcases a great amount of modern creative architecture, whose pure lines and original shapes o er a favorable context for the topic of Geometry.
The main purpose of this book is to present the basic theory and some recent de velopments concerning the Cauchy problem for higher order abstract differential equations u(n)(t) + ~ AiU(i)(t) = 0, t ~ 0, { U(k)(O) = Uk, 0 ~ k ~ n-l. where AQ, Ab . . . , A - are linear operators in a topological vector space E. n 1 Many problems in nature can be modeled as (ACP ). For example, many n initial value or initial-boundary value problems for partial differential equations, stemmed from mechanics, physics, engineering, control theory, etc. , can be trans lated into this form by regarding the partial differential operators in the space variables as operators Ai (0 ~ i ~ n - 1) in some function space E and letting the boundary conditions (if any) be absorbed into the definition of the space E or of the domain of Ai (this idea of treating initial value or initial-boundary value problems was discovered independently by E. Hille and K. Yosida in the forties). The theory of (ACP ) is closely connected with many other branches of n mathematics. Therefore, the study of (ACPn) is important for both theoretical investigations and practical applications. Over the past half a century, (ACP ) has been studied extensively.
This book constitutes the thoroughly refereed and revised post-workshop proceedings of the International Workshop on Automated Deduction in Geometry, held in Toulouse, France, in September 1996. The revised extended papers accepted for inclusion in the volume were selected on the basis of double reviewing. Among the topics covered are automated geometric reasoning and the deduction applied to Dixon resultants, Grobner bases, characteristic sets, computational geometry, algebraic geometry, and planet motion; furthermore the system REDLOG is demonstrated and the verification of geometric statements as well as the automated production of proof in Euclidean Geometry are present.
From the reviews: "... In the past, more of the leading mathematicians proposed and solved problems than today, and there were problem departments in many journals. Pólya and Szego must have combed all of the large problem literature from about 1850 to 1925 for their material, and their collection of the best in analysis is a heritage of lasting value. The work is unashamedly dated. With few exceptions, all of its material comes from before 1925. We can judge its vintage by a brief look at the author indices (combined). Let's start on the C's: Cantor, Carathéodory, Carleman, Carlson, Catalan, Cauchy, Cayley, Cesàro,... Or the L's: Lacour, Lagrange, Laguerre, Laisant, Lambert, Landau, Laplace, Lasker, Laurent, Lebesgue, Legendre,... Omission is also information: Carlitz, Erdös, Moser, etc."Bull.Americ.Math.Soc.
From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
The Blaubeuren Conference "Theory and Practice of Geometric Modeling" has become a meeting place for leading experts from industrial and academic research institutions, CAD system developers and experienced users to exchange new ideas and to discuss new concepts and future directions in geometric modeling. The relaxed and calm atmosphere of the Heinrich-Fabri-Institute in Blaubeuren provides the appropriate environment for profound and engaged discussions that are not equally possible on other occasions. Real problems from current industrial projects as well as theoretical issues are addressed on a high scientific level. This book is the result of the lectures and discussions during the conference which took place from October 14th to 18th, 1996. The contents is structured in 4 parts: Mathematical Tools Representations Systems Automated Assembly. The editors express their sincere appreciation to the contributing authors, and to the members of the program committee for their cooperation, the careful reviewing and their active participation that made the conference and this book a success.
This is the softcover reprint of the English translation of 1971 (available from Springer since 1989) of the first 4 chapters of Bourbaki's Topologie générale. It gives all the basics of the subject, starting from definitions. Important classes of topological spaces are studied, uniform structures are introduced and applied to topological groups. Real numbers are constructed and their properties established. Part II, comprising the later chapters, Ch. 5-10, is also available in English in softcover.
The present book contains the lecture notes from a "Nachdiplomvorlesung," a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts."
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
The closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed.
The book describes some interactions of topology with other areas of mathematics and it requires only basic background. The first chapter deals with the topology of pointwise convergence and proves results of Bourgain, Fremlin, Talagrand and Rosenthal on compact sets of Baire class-1 functions. In the second chapter some topological dynamics of beta-N and its applications to combinatorial number theory are presented. The third chapter gives a proof of the Ivanovskii-Kuzminov-Vilenkin theorem that compact groups are dyadic. The last chapter presents Marjanovic's classification of hyperspaces of compact metric zerodimensional spaces.
The articles in this volume were written to commemorate Reinhold Remmert's 60th birthday in June, 1990. They are surveys, meant to facilitate access to some of the many aspects of the theory of complex manifolds, and demonstrate the interplay between complex analysis and many other branches of mathematics, algebraic geometry, differential topology, representations of Lie groups, and mathematical physics being only the most obvious of these branches. Each of these articles should serve not only to describe the particular circle of ideas in complex analysis with which it deals but also as a guide to the many mathematical ideas related to its theme.
This book contains a collection of articles corresponding to some of the talks delivered at the Foundations of Computational Mathematics conference held at IMPA in Rio de Janeiro in January 1997. Some ofthe others are published in the December 1996 issue of the Journal of Complexity. Both of these publications were available and distributed at the meeting. Even in this aspect we hope to have achieved a synthesis of the mathematics and computer science cultures as well as of the disciplines. The reaction to the Park City meeting on Mathematics of Numerical Analy sis: Real Number Algorithms which was chaired by Steve Smale and had around 275 participants, was very enthusiastic. At the suggestion of Narendra Karmar mar a lunch time meeting of Felipe Cucker, Arieh Iserles, Narendra Karmarkar, Jim Renegar, Mike Shub and Steve Smale decided to try to hold a periodic meeting entitled "Foundations of Computational Mathematics" and to form an organization with the same name whose primary purpose will be to hold the meeting. This is then the first edition of FoCM as such. It has been organized around a small collection of workshops, namely - Systems of algebraic equations and computational algebraic geometry - Homotopy methods and real machines - Information-based complexity - Numerical linear algebra - Approximation and PDEs - Optimization - Differential equations and dynamical systems - Relations to computer science - Vision and related computational tools There were also twelve plenary speakers."
We have tried to design this book for both instructional and reference use, during and after a first course in algebraic topology aimed at users rather than developers; indeed, the book arose from such courses taught by the authors. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. A certain amount of redundancy is built in for the reader's convenience: we hope to minimize: fiipping back and forth, and we have provided some appendices for reference. The first three are concerned with background material in algebra, general topology, manifolds, geometry and bundles. Another gives tables of homo topy groups that should prove useful in computations, and the last outlines the use of a computer algebra package for exterior calculus. Our approach has been that whenever a construction from a proof is needed, we have explicitly noted and referenced this. In general, wehavenot given a proof unless it yields something useful for computations. As always, the only way to un derstand mathematics is to do it and use it. To encourage this, Ex denotes either an example or an exercise. The choice is usually up to you the reader, depending on the amount of work you wish to do; however, some are explicitly stated as ( unanswered) questions. In such cases, our implicit claim is that you will greatly benefit from at least thinking about how to answer them."
Geometry undoubtedly plays a central role in modern mathematics. And it is not only a physiological fact that 80 % of the information obtained by a human is absorbed through the eyes. It is easier to grasp mathematical con- cepts and ideas visually than merely to read written symbols and formulae. Without a clear geometric perception of an analytical mathematical problem our intuitive understanding is restricted, while a geometric interpretation points us towards ways of investigation. Minkowski's convexity theory (including support functions, mixed volu- mes, finite-dimensional normed spaces etc.) was considered by several mathe- maticians to be an excellent and elegant, but useless mathematical device. Nearly a century later, geometric convexity became one of the major tools of modern applied mathematics. Researchers in functional analysis, mathe- matical economics, optimization, game theory and many other branches of our field try to gain a clear geometric idea, before they start to work with formulae, integrals, inequalities and so on. For examples in this direction, we refer to [MalJ and [B-M 2J. Combinatorial geometry emerged this century. Its major lines of investi- gation, results and methods were developed in the last decades, based on seminal contributions by O. Helly, K. Borsuk, P. Erdos, H. Hadwiger, L. Fe- jes T6th, V. Klee, B. Griinbaum and many other excellent mathematicians.
The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes." It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.
This is a new in paperback version of a very successful monograph first published in 1980. The book presents a survey of the geometric quantization theory of Konstant and Souriau. For this new paperback edition the text has been extensively rewritten and brought up-to-date, with the addition of many new examples, and an expansion of the material on field theory. |
![]() ![]() You may like...
Practical Aspects of Declarative…
Shriram Krishnamurthi, C.R. Ramakrishnan
Paperback
R1,654
Discovery Miles 16 540
Computing with Data - An Introduction to…
Guy Lebanon, Mohamed El-Geish
Hardcover
R2,907
Discovery Miles 29 070
Symmetry and Spaces - In Honor of Gerry…
H. E. a. Eddy Campbell, Aloysius G. Helminck, …
Hardcover
R3,000
Discovery Miles 30 000
SPIN Model Checking and Software…
Klaus Havelund, John Penix, …
Paperback
R1,652
Discovery Miles 16 520
SSA-based Compiler Design
Fabrice Rastello, Florent Bouchez Tichadou
Hardcover
R3,227
Discovery Miles 32 270
Implementation of Functional Languages…
Pieter Koopman, Chris Clack
Paperback
R1,568
Discovery Miles 15 680
|