![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent onchoice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated "Stone Spaces" in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories."
These notes, based on lectures delivered in Saint Flour, provide an easy introduction to the authors' 2007 Springer monograph "Random Fields and Geometry." While not as exhaustive as the full monograph, they are also less exhausting, while still covering the basic material, typically at a more intuitive and less technical level. They also cover some more recent material relating to random algebraic topology and statistical applications. The notes include an introduction to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness. This is followed by a quick review of geometry, both integral and Riemannian, with an emphasis on tube formulae, to provide the reader with the material needed to understand and use the Gaussian kinematic formula, the main result of the notes. This is followed by chapters on topological inference and random algebraic topology, both of which provide applications of the main results.
This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.
Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.
Surfaces in 4-Space, written by leading specialists in the field, discusses knotted surfaces in 4-dimensional space and surveys many of the known results in the area. Results on knotted surface diagrams, constructions of knotted surfaces, classically defined invariants, and new invariants defined via quandle homology theory are presented. The last chapter comprises many recent results, and techniques for computation are presented. New tables of quandles with a few elements and the homology groups thereof are included. This book contains many new illustrations of knotted surface diagrams. The reader of the book will become intimately aware of the subtleties in going from the classical case of knotted circles in 3-space to this higher dimensional case. As a survey, the book is a guide book to the extensive literature on knotted surfaces and will become a useful reference for graduate students and researchers in mathematics and physics.
Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds. Their book will be used by graduate students and researchers in mathematics and mathematical physics.
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
Hyperbolic Manifolds and Discrete Groups is at the crossroads of several branches of mathematics: hyperbolic geometry, discrete groups, 3-dimensional topology, geometric group theory, and complex analysis. The main focus throughout the text is on the "Big Monster," i.e., on Thurston 's hyperbolization theorem, which has not only completely changes the landscape of 3-dimensinal topology and Kleinian group theory but is one of the central results of 3-dimensional topology. The book is fairly self-contained, replete with beautiful illustrations, a rich set of examples of key concepts, numerous exercises, and an extensive bibliography and index. It should serve as an ideal graduate course/seminar text or as a comprehensive reference.
Outer billiards is a basic dynamical system defined relative to a convex shape in the plane. B. H. Neumann introduced this system in the 1950s, and J. Moser popularized it as a toy model for celestial mechanics. All along, the so-called Moser-Neumann question has been one of the central problems in the field. This question asks whether or not one can have an outer billiards system with an unbounded orbit. The Moser-Neumann question is an idealized version of the question of whether, because of small disturbances in its orbit, the Earth can break out of its orbit and fly away from the Sun. In "Outer Billiards on Kites," Richard Schwartz presents his affirmative solution to the Moser-Neumann problem. He shows that an outer billiards system can have an unbounded orbit when defined relative to any irrational kite. A kite is a quadrilateral having a diagonal that is a line of bilateral symmetry. The kite is irrational if the other diagonal divides the quadrilateral into two triangles whose areas are not rationally related. In addition to solving the basic problem, Schwartz relates outer billiards on kites to such topics as Diophantine approximation, the modular group, self-similar sets, polytope exchange maps, profinite completions of the integers, and solenoids--connections that together allow for a fairly complete analysis of the dynamical system.
Intended for use in college courses for prospective or in-service secondary school teachers of geometry. Designed to give teachers broad preparation in the content of elementary geometry as well as closely related topics of a slightly more advanced nature. The presentation and the modular format are designed to incorporate a flexible methodology for the teaching of geometry, one that can be adapted to different classroom settings. The basic strategy is to develop the few fundamental concepts of elementary geometry, first in intuitive form, and then more rigorously. The rest of the material is then built up out of these concepts through a combination of exposition and "guided discovery" in the problem sections. A separate volume including the solutions to the exercises is also available.
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.
From the reviews of the first edition: "This lovely book is intended as a primer in harmonic analysis at the undergraduate level. All the central concepts of harmonic analysis are introduced using Riemann integral and metric spaces only. The exercises at the end of each chapter are interesting and challenging..." Sanjiv Kumar Gupta for MathSciNet .,." In this well-written textbook the central concepts of Harmonic Analysis are explained in an enjoyable way, while using very little technical background. Quite surprisingly this approach works. It is not an exaggeration that each undergraduate student interested in and each professor teaching Harmonic Analysis will benefit from the streamlined and direct approach of this book." Ferenc MA3ricz for Acta Scientiarum Mathematicarum This book is a primer in harmonic analysis using an elementary approach. Its first aim is to provide an introduction to Fourier analysis, leading up to the Poisson Summation Formula. Secondly, it makes the reader aware of the fact that both, the Fourier series and the Fourier transform, are special cases of a more general theory arising in the context of locally compact abelian groups. The third goal of this book is to introduce the reader to the techniques used in harmonic analysis of noncommutative groups. There are two new chapters in this new edition. One on distributions will complete the set of real variable methods introduced in the first part. The other on the Heisenberg Group provides an example of a group that is neither compact nor abelian, yet is simple enough to easily deduce the Plancherel Theorem. Professor Deitmar is Professor of Mathematics at the University ofT"ubingen, Germany. He is a former Heisenberg fellow and has taught in the U.K. for some years. In his leisure time he enjoys hiking in the mountains and practicing Aikido.
2013 Reprint of 1963 Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. The theory of Boolean algebras is one of the most attractive parts of mathematics. On the one hand, Boolean algebras arise naturally in such diverse fields as logic, measure theory, topology, and ring theory, so that the study of these objects is motivated by important applications. At the same time, the theory which has been developed constitutes one of the most elegant parts of modern algebra. Finally, the subject still poses many challenging questions, some of which have considerable importance. A graduate student who wishes to study Boolean algebras will find several excellent books to smooth his way: for an introduction, the book by Halmos is probably the best of these monographs. It offers a quick route to the most attractive parts of the theory. |
You may like...
Groupoid Metrization Theory - With…
Dorina Mitrea, Irina Mitrea, …
Hardcover
R2,733
Discovery Miles 27 330
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,400
Discovery Miles 24 000
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, …
Hardcover
R1,162
Discovery Miles 11 620
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,143
Discovery Miles 21 430
|