![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
This book examines in detail approximate fixed point theory in different classes of topological spaces for general classes of maps. It offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods, for a wide variety of topologies and maps. Content includes known and recent results in topology (with proofs), as well as recent results in approximate fixed point theory. This work starts with a set of basic notions in topological spaces. Special attention is given to topological vector spaces, locally convex spaces, Banach spaces, and ultrametric spaces. Sequences and function spaces-and fundamental properties of their topologies-are also covered. The reader will find discussions on fundamental principles, namely the Hahn-Banach theorem on extensions of linear (bounded) functionals; the Banach open mapping theorem; the Banach-Steinhaus uniform boundedness principle; and Baire categories, including some applications. Also included are weak topologies and their properties, in particular the theorems of Eberlein-Smulian, Goldstine, Kakutani, James and Grothendieck, reflexive Banach spaces, l_{1}- sequences, Rosenthal's theorem, sequential properties of the weak topology in a Banach space and weak* topology of its dual, and the Frechet-Urysohn property. The subsequent chapters cover various almost fixed point results, discussing how to reach or approximate the unique fixed point of a strictly contractive mapping of a spherically complete ultrametric space. They also introduce synthetic approaches to fixed point problems involving regular-global-inf functions. The book finishes with a study of problems involving approximate fixed point property on an ambient space with different topologies. By providing appropriate background and up-to-date research results, this book can greatly benefit graduate students and mathematicians seeking to advance in topology and fixed point theory.
This book presents the theory of optimal and critical regularities of groups of diffeomorphisms, from the classical work of Denjoy and Herman, up through recent advances. Beginning with an investigation of regularity phenomena for single diffeomorphisms, the book goes on to describes a circle of ideas surrounding Filipkiewicz's Theorem, which recovers the smooth structure of a manifold from its full diffeomorphism group. Topics covered include the simplicity of homeomorphism groups, differentiability of continuous Lie group actions, smooth conjugation of diffeomorphism groups, and the reconstruction of spaces from group actions. Various classical and modern tools are developed for controlling the dynamics of general finitely generated group actions on one-dimensional manifolds, subject to regularity bounds, including material on Thompson's group F, nilpotent groups, right-angled Artin groups, chain groups, finitely generated groups with prescribed critical regularities, and applications to foliation theory and the study of mapping class groups. The book will be of interest to researchers in geometric group theory.
A fresh approach to introductory topology, this volume explains nontrivial applications of metric space topology to analysis, clearly establishing their relationship. Also, topics from elementary algebraic topology focus on concrete results with minimal algebraic formalism. The first two chapters consider metric space and point-set topology; the second two, algebraic topological material. 1983 ed. Solutions to Selected Exercises. List of Notations. Index. 51 illus.
Unifies the field of optimization with a few geometric principles. The number of books that can legitimately be called classics in their fields is small indeed, but David Luenberger's Optimization by Vector Space Methods certainly qualifies. Not only does Luenberger clearly demonstrate that a large segment of the field of optimization can be effectively unified by a few geometric principles of linear vector space theory, but his methods have found applications quite removed from the engineering problems to which they were first applied. Nearly 30 years after its initial publication, this book is still among the most frequently cited sources in books and articles on financial optimization. The book uses functional analysis —the study of linear vector spaces —to impose simple, intuitive interpretations on complex, infinite-dimensional problems. The early chapters offer an introduction to functional analysis, with applications to optimization. Topics addressed include linear space, Hilbert space, least-squares estimation, dual spaces, and linear operators and adjoints. Later chapters deal explicitly with optimization theory, discussing
End-of-chapter problems constitute a major component of this book and come in two basic varieties. The first consists of miscellaneous mathematical problems and proofs that extend and supplement the theoretical material in the text; the second, optimization problems, illustrates further areas of application and helps the reader formulate and solve practical problems. For professionals and graduate students in engineering, mathematics, operations research, economics, and business and finance, Optimization by Vector Space Methods is an indispensable source of problem-solving tools.
This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics.Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This book provides an introduction to some key subjects in algebra and topology. It consists of comprehensive texts of some hours courses on the preliminaries for several advanced theories in (categorical) algebra and topology. Often, this kind of presentations is not so easy to find in the literature, where one begins articles by assuming a lot of knowledge in the field. This volume can both help young researchers to quickly get into the subject by offering a kind of " roadmap " and also help master students to be aware of the basics of other research directions in these fields before deciding to specialize in one of them. Furthermore, it can be used by established researchers who need a particular result for their own research and do not want to go through several research papers in order to understand a single proof. Although the chapters can be read as " self-contained " chapters, the authors have tried to coordinate the texts in order to make them complementary. The seven chapters of this volume correspond to the seven courses taught in two Summer Schools that took place in Louvain-la-Neuve in the frame of the project Fonds d'Appui a l'Internationalisation of the Universite catholique de Louvain to strengthen the collaborations with the universities of Coimbra, Padova and Poitiers, within the Coimbra Group.
This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.
This book collects select papers presented at the International Workshop and Conference on Topology & Applications, held in Kochi, India, from 9-11 December 2018. The book discusses topics on topological dynamical systems and topological data analysis. Topics are ranging from general topology, algebraic topology, differential topology, fuzzy topology, topological dynamical systems, topological groups, linear dynamics, dynamics of operator network topology, iterated function systems and applications of topology. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject.
This monograph uses braids to explore dynamics on surfaces, with an eye towards applications to mixing in fluids. The text uses the particular example of taffy pulling devices to represent pseudo-Anosov maps in practice. In addition, its final chapters also briefly discuss current applications in the emerging field of analyzing braids created from trajectory data. While written with beginning graduate students, advanced undergraduates, or practicing applied mathematicians in mind, the book is also suitable for pure mathematicians seeking real-world examples. Readers can benefit from some knowledge of homotopy and homology groups, but these concepts are briefly reviewed. Some familiarity with Matlab is also helpful for the computational examples.
The aim of this book is to give necessary and sufficient conditions for a C oo map to be C 0-stable; the aim is achieved in a wide range of dimensions via a detailed study of the geometry and topology of many classes of "generic" singularities. The methods developed for examining the topology and geometry use results from many areas of mathematics - geometric topology, stratification theory, algebraic topology, algebraic geometry, commutative algebra...- and further progress will doubtless be made from the application of deeper results from these areas. Conversely, it is to be hoped that the description of the behaviour of generic singularities will also have interesting consequences for these areas of mathematics, which are those with most interaction with singularity theory. The book describes original research; essentially none of its results has previously appeared elsewhere, either in scientific articles or in books. This book is intended for research mathematicians in singularity theory and in selected areas of geometric topology, stratification theory, algebraic geometry, commutative algebra.
This book discusses the invertibility of fuzzy topological spaces and related topics. Certain types of fuzzy topological spaces are introduced, and interrelations between them are brought forth. Various properties of invertible fuzzy topological spaces are presented, and characterizations for completely invertible fuzzy topological spaces are discussed. The relationship between homogeneity and invertibility is examined, and, subsequently, the orbits in an invertible fuzzy topological space are studied. The structure of invertible fuzzy topological spaces is investigated, and a clear picture of the inverting pairs in an invertible fuzzy topological space is introduced. Further, the related spaces such as sums, subspaces, simple extensions, quotient spaces, and product spaces of invertible fuzzy topological spaces are examined. In addition, the effect of invertibility on fuzzy topological properties like separation axioms, axioms of countability, compactness, and fuzzy connectedness in invertible fuzzy topological spaces is established. The book sketches ideas extended to the bigger canvas of L-topology in a very interesting manner.
The emerging field of computational topology utilizes theory from topology and the power of computing to solve problems in diverse fields. Recent applications include computer graphics, computer-aided design (CAD), and structural biology, all of which involve understanding the intrinsic shape of some real or abstract space. A primary goal of this book is to present basic concepts from topology and Morse theory to enable a non-specialist to grasp and participate in current research in computational topology. The author gives a self-contained presentation of the mathematical concepts from a computer scientist's point of view, combining point set topology, algebraic topology, group theory, differential manifolds, and Morse theory. He also presents some recent advances in the area, including topological persistence and hierarchical Morse complexes. Throughout, the focus is on computational challenges and on presenting algorithms and data structures when appropriate.
This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder. This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the involved algebraic and field-theoretic methods. The connection to quantum field theory leads to the study of important new field theories and to insights in other parts of mathematics such as symplectic and Poisson geometry, and integrable systems. Based on lectures given by the author at the University of Zurich, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites.
This text bridges the gap existing in the field of set theoretical topology between the introductory texts and the more specialised monographs. The authors review fit developments in general topology and discuss important new areas of research and the importance of defining a methodology applicable to this active field of mathematics. The concept of normal cover and related ideas is considered in detail, as are the characterisations of normal spaces, collectionwise normal spaces and their interrelationships with paracompact spaces (and other weaker forms of compactness). Various methods of embedding subspaces are studied, before considering newer concepts such as M-spaces and their relationships with established ideas. These ideas are applied to give new results pertaining to the extension of continuous vector-valued functions. Wallman Frink compactifications and realcompactifications are also studied to assist in unifying the ideas through the use of the more general L-filter.
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT( ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
This book presents, in a clear and structured way, the set function \mathcal{T} and how it evolved since its inception by Professor F. Burton Jones in the 1940s. It starts with a very solid introductory chapter, with all the prerequisite material for navigating through the rest of the book. It then gradually advances towards the main properties, Decomposition theorems, \mathcal{T}-closed sets, continuity and images, to modern applications. The set function \mathcal{T} has been used by many mathematicians as a tool to prove results about the semigroup structure of the continua, and about the existence of a metric continuum that cannot be mapped onto its cone or to characterize spheres. Nowadays, it has been used by topologists worldwide to investigate open problems in continuum theory. This book can be of interest to both advanced undergraduate and graduate students, and to experienced researchers as well. Its well-defined structure make this book suitable not only for self-study but also as support material to seminars on the subject. Its many open problems can potentially encourage mathematicians to contribute with further advancements in the field.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet.Teil IV des Springer-Handbuchs enthalt die folgenden Zusatzkapitel zum Springer-Taschenbuch: Hohere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitatstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krummung und Analysis.
The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion will be essential reading for students of intelligence studies and strategic studies, and highly recommended for students of defence studies, foreign policy, Cold War studies, diplomacy and international relations in general.
The volume consists of a set of surveys on geometry in the broad sense. The goal is to present a certain number of research topics in a non-technical and appealing manner. The topics surveyed include spherical geometry, the geometry of finite-dimensional normed spaces, metric geometry (Bishop-Gromov type inequalities in Gromov-hyperbolic spaces), convexity theory and inequalities involving volumes and mixed volumes of convex bodies, 4-dimensional topology, Teichmuller spaces and mapping class groups actions, translation surfaces and their dynamics, and complex higher-dimensional geometry. Several chapters are based on lectures given by their authors to middle-advanced level students and young researchers. The whole book is intended to be an introduction to current research trends in geometry.
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
This tract has two purposes: to show what is known about the n-dimensional unit cubes and to demonstrate how Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory, can be applied to the study of them. The unit cubes, from any point of view, are among the most important and fascinating objects in an n-dimensional Euclidean space. However, our knowledge about them is still quite limited and many basic problems remain unsolved. In this Tract eight topics about the unit cubes are introduced: cross sections, projections, inscribed simplices, triangulations, 0/1 polytopes, Minkowski's conjecture, Furtwangler's conjecture, and Keller's conjecture. In particular the author demonstrates how deep analysis like log concave measure and the Brascamp-Lieb inequality can deal with the cross section problem, how Hyperbolic Geometry helps with the triangulation problem, how group rings can deal with Minkowski's conjecture and Furtwangler's conjecture, and how Graph Theory handles Keller's conjecture.
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales. |
You may like...
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,143
Discovery Miles 21 430
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,186
Discovery Miles 31 860
Modeling in Mathematics - Proceedings of…
Johan Gielis, Paolo Emilio Ricci, …
Hardcover
R3,484
Discovery Miles 34 840
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, …
Hardcover
R1,162
Discovery Miles 11 620
|