![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
This book provides an introduction to some key subjects in algebra and topology. It consists of comprehensive texts of some hours courses on the preliminaries for several advanced theories in (categorical) algebra and topology. Often, this kind of presentations is not so easy to find in the literature, where one begins articles by assuming a lot of knowledge in the field. This volume can both help young researchers to quickly get into the subject by offering a kind of " roadmap " and also help master students to be aware of the basics of other research directions in these fields before deciding to specialize in one of them. Furthermore, it can be used by established researchers who need a particular result for their own research and do not want to go through several research papers in order to understand a single proof. Although the chapters can be read as " self-contained " chapters, the authors have tried to coordinate the texts in order to make them complementary. The seven chapters of this volume correspond to the seven courses taught in two Summer Schools that took place in Louvain-la-Neuve in the frame of the project Fonds d'Appui a l'Internationalisation of the Universite catholique de Louvain to strengthen the collaborations with the universities of Coimbra, Padova and Poitiers, within the Coimbra Group.
This book presents, for the first time in English, the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics. A recognition of Beltrami comparable to that given the pioneering works of Bolyai and Lobachevsky seems long overdue - not only because Beltrami rescued hyperbolic geometry from oblivion by proving it to be logically consistent, but because he gave it a concrete meaning (a model) that made hyperbolic geometry part of ordinary mathematics. The models subsequently discovered by Klein and Poincare brought hyperbolic geometry even further down to earth and paved the way for the current explosion of activity in low-dimensional geometry and topology.By placing the works of these three mathematicians side by side and providing commentaries, this book gives the student, historian, or professional geometer a bird's-eye view of one of the great episodes in mathematics. The unified setting and historical context reveal the insights of Beltrami, Klein, and Poincare in their full brilliance.
This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.
This book collects select papers presented at the International Workshop and Conference on Topology & Applications, held in Kochi, India, from 9-11 December 2018. The book discusses topics on topological dynamical systems and topological data analysis. Topics are ranging from general topology, algebraic topology, differential topology, fuzzy topology, topological dynamical systems, topological groups, linear dynamics, dynamics of operator network topology, iterated function systems and applications of topology. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. The book is a valuable resource for researchers, scientists and engineers from both academia and industry.
In most mathematics textbooks, the most exciting part of mathematics - the process of invention and discovery - is completely hidden from the reader. The aim of ""Knots and Surfaces"" is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequisites for understanding the text. Any college student interested in discovering the beauty of mathematics will enjoy a course taught from this book. The book has also been used successfully with non science students who want to fulfill a science requirement. Also available from the AMS by David W. Farmer is ""Groups and Symmetry: A Guide to Discovering Mathematics"".
This book provides a comprehensive survey of the Sharkovsky ordering, its different aspects and its role in dynamical systems theory and applications. It addresses the coexistence of cycles for continuous interval maps and one-dimensional spaces, combinatorial dynamics on the interval and multidimensional dynamical systems. Also featured is a short chapter of personal remarks by O.M. Sharkovsky on the history of the Sharkovsky ordering, the discovery of which almost 60 years ago led to the inception of combinatorial dynamics. Now one of cornerstones of dynamics, bifurcation theory and chaos theory, the Sharkovsky ordering is an important tool for the investigation of dynamical processes in nature. Assuming only a basic mathematical background, the book will appeal to students, researchers and anyone who is interested in the subject.
This monograph uses braids to explore dynamics on surfaces, with an eye towards applications to mixing in fluids. The text uses the particular example of taffy pulling devices to represent pseudo-Anosov maps in practice. In addition, its final chapters also briefly discuss current applications in the emerging field of analyzing braids created from trajectory data. While written with beginning graduate students, advanced undergraduates, or practicing applied mathematicians in mind, the book is also suitable for pure mathematicians seeking real-world examples. Readers can benefit from some knowledge of homotopy and homology groups, but these concepts are briefly reviewed. Some familiarity with Matlab is also helpful for the computational examples.
This book discusses the invertibility of fuzzy topological spaces and related topics. Certain types of fuzzy topological spaces are introduced, and interrelations between them are brought forth. Various properties of invertible fuzzy topological spaces are presented, and characterizations for completely invertible fuzzy topological spaces are discussed. The relationship between homogeneity and invertibility is examined, and, subsequently, the orbits in an invertible fuzzy topological space are studied. The structure of invertible fuzzy topological spaces is investigated, and a clear picture of the inverting pairs in an invertible fuzzy topological space is introduced. Further, the related spaces such as sums, subspaces, simple extensions, quotient spaces, and product spaces of invertible fuzzy topological spaces are examined. In addition, the effect of invertibility on fuzzy topological properties like separation axioms, axioms of countability, compactness, and fuzzy connectedness in invertible fuzzy topological spaces is established. The book sketches ideas extended to the bigger canvas of L-topology in a very interesting manner.
This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder. This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the involved algebraic and field-theoretic methods. The connection to quantum field theory leads to the study of important new field theories and to insights in other parts of mathematics such as symplectic and Poisson geometry, and integrable systems. Based on lectures given by the author at the University of Zurich, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites.
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT( ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions - like zigzag persistence and multiparameter persistence - and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
The Routledge Companion to Intelligence Studies provides a broad overview of the growing field of intelligence studies. The recent growth of interest in intelligence and security studies has led to an increased demand for popular depictions of intelligence and reference works to explain the architecture and underpinnings of intelligence activity. Divided into five comprehensive sections, this Companion provides a strong survey of the cutting-edge research in the field of intelligence studies: Part I: The evolution of intelligence studies; Part II: Abstract approaches to intelligence; Part III: Historical approaches to intelligence; Part IV: Systems of intelligence; Part V: Contemporary challenges. With a broad focus on the origins, practices and nature of intelligence, the book not only addresses classical issues, but also examines topics of recent interest in security studies. The overarching aim is to reveal the rich tapestry of intelligence studies in both a sophisticated and accessible way. This Companion will be essential reading for students of intelligence studies and strategic studies, and highly recommended for students of defence studies, foreign policy, Cold War studies, diplomacy and international relations in general.
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet.Teil IV des Springer-Handbuchs enthalt die folgenden Zusatzkapitel zum Springer-Taschenbuch: Hohere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitatstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krummung und Analysis.
This book presents, in a clear and structured way, the set function \mathcal{T} and how it evolved since its inception by Professor F. Burton Jones in the 1940s. It starts with a very solid introductory chapter, with all the prerequisite material for navigating through the rest of the book. It then gradually advances towards the main properties, Decomposition theorems, \mathcal{T}-closed sets, continuity and images, to modern applications. The set function \mathcal{T} has been used by many mathematicians as a tool to prove results about the semigroup structure of the continua, and about the existence of a metric continuum that cannot be mapped onto its cone or to characterize spheres. Nowadays, it has been used by topologists worldwide to investigate open problems in continuum theory. This book can be of interest to both advanced undergraduate and graduate students, and to experienced researchers as well. Its well-defined structure make this book suitable not only for self-study but also as support material to seminars on the subject. Its many open problems can potentially encourage mathematicians to contribute with further advancements in the field.
This book is the first self-contained exposition of the fascinating link between dynamical systems and dimension groups. The authors explore the rich interplay between topological properties of dynamical systems and the algebraic structures associated with them, with an emphasis on symbolic systems, particularly substitution systems. It is recommended for anybody with an interest in topological and symbolic dynamics, automata theory or combinatorics on words. Intended to serve as an introduction for graduate students and other newcomers to the field as well as a reference for established researchers, the book includes a thorough account of the background notions as well as detailed exposition - with full proofs - of the major results of the subject. A wealth of examples and exercises, with solutions, serve to build intuition, while the many open problems collected at the end provide jumping-off points for future research.
The volume consists of a set of surveys on geometry in the broad sense. The goal is to present a certain number of research topics in a non-technical and appealing manner. The topics surveyed include spherical geometry, the geometry of finite-dimensional normed spaces, metric geometry (Bishop-Gromov type inequalities in Gromov-hyperbolic spaces), convexity theory and inequalities involving volumes and mixed volumes of convex bodies, 4-dimensional topology, Teichmuller spaces and mapping class groups actions, translation surfaces and their dynamics, and complex higher-dimensional geometry. Several chapters are based on lectures given by their authors to middle-advanced level students and young researchers. The whole book is intended to be an introduction to current research trends in geometry.
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.
This book provides a general framework for doing geometric group theory for many non-locally-compact topological transformation groups that arise in mathematical practice, including homeomorphism and diffeomorphism groups of manifolds, isometry groups of separable metric spaces and automorphism groups of countable structures. Using Roe's framework of coarse structures and spaces, the author defines a natural coarse geometric structure on all topological groups. This structure is accessible to investigation, especially in the case of Polish groups, and often has an explicit description, generalising well-known structures in familiar cases including finitely generated discrete groups, compactly generated locally compact groups and Banach spaces. In most cases, the coarse geometric structure is metrisable and may even be refined to a canonical quasimetric structure on the group. The book contains many worked examples and sufficient introductory material to be accessible to beginning graduate students. An appendix outlines several open problems in this young and rich theory.
Robert Langlands formulated his celebrated conjectures, initiating the Langlands Program, at the age of 31, profoundly changing the landscape of mathematics. Langlands, recipient of the Abel Prize, is famous for his insight in discovering links among seemingly dissimilar objects, leading to astounding results. This book is uniquely designed to serve a wide range of mathematicians and advanced students, showcasing Langlands' unique creativity and guiding readers through the areas of Langlands' work that are generally regarded as technical and difficult to penetrate. Part 1 features non-technical personal reflections, including Langlands' own words describing how and why he was led to formulate his conjectures. Part 2 includes survey articles of Langlands' early work that led to his conjectures, and centers on his principle of functoriality and foundational work on the Eisenstein series, and is accessible to mathematicians from other fields. Part 3 describes some of Langlands' contributions to mathematical physics.
This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmuller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston's wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.
This book comprises an overview of twelve months of intense activity of the research group Geometry, Topology, Algebra, and Applications (GEOMVAP) at the Universitat Politecnica de Catalunya (UPC). Namely, it contains extended abstracts of the group meeting in Cardona and of the international Workshop of Women in Geometry and Topology aligned with a series of workshops in the topic. As such, it includes a panoramic view of the main research interests of the group which focus on varieties and manifolds from the algebraic, topological and differential perspective with a view towards applications. The GEOMVAP group has a long tradition working on various interfaces of algebra, geometry and topology. In the last decade, the group has become active contributor in interdisciplinary science and it is now focused on both a theoretical point of view and the transversal applications to several disciplines including Robotics, Machine Learning, Phylogenetics, Physics and Celestial Mechanics. The increasing interdisciplinarity of modern research and the fact that the boundaries between different areas of mathematics are vanishing, with a constant transfer of problems and techniques between them, makes it difficult to progress without a multidisciplinary approach. GEOMVAP gathers together experts in Algebraic, Symplectic and Arithmetic Geometry to stimulate the interaction between them and to allow the study of each object from different points of view. The book aims at established researchers, as well as at PhD and postdoctoral students who want to learn more about the latest advances in pure and applied Geometry and Topology.
This book delivers stimulating input for a broad range of researchers, from geographers and ecologists to psychologists interested in spatial perception and physicists researching in complex systems. How can one decide whether one surface or spatial object is more complex than another? What does it require to measure the spatial complexity of small maps, and why does this matter for nature, science and technology? Drawing from algorithmics, geometry, topology, probability and informatics, and with examples from everyday life, the reader is invited to cross the borders into the bewildering realm of spatial complexity, as it emerges from the study of geographic maps, landscapes, surfaces, knots, 3D and 4D objects. The mathematical and cartographic experiments described in this book lead to hypotheses and enigmas with ramifications in aesthetics and epistemology.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
The book addresses the minimization of special lower semicontinuous functionals over closed balls in metric spaces, called the approximate variation. The new notion of approximate variation contains more information about the bounded variation functional and has the following features: the infimum in the definition of approximate variation is not attained in general and the total Jordan variation of a function is obtained by a limiting procedure as a parameter tends to zero. By means of the approximate variation, we are able to characterize regulated functions in a generalized sense and provide powerful compactness tools in the topology of pointwise convergence, conventionally called pointwise selection principles. The book presents a thorough, self-contained study of the approximate variation and results which were not published previously in book form. The approximate variation is illustrated by a large number of examples designed specifically for this study. The discussion elaborates on the state-of-the-art pointwise selection principles applied to functions with values in metric spaces, normed spaces, reflexive Banach spaces, and Hilbert spaces. The highlighted feature includes a deep study of special type of lower semicontinuous functionals though the applied methods are of a general nature. The content is accessible to students with some background in real analysis, general topology, and measure theory. Among the new results presented are properties of the approximate variation: semi-additivity, change of variable formula, subtle behavior with respect to uniformly and pointwise convergent sequences of functions, and the behavior on improper metric spaces. These properties are crucial for pointwise selection principles in which the key role is played by the limit superior of the approximate variation. Interestingly, pointwise selection principles may be regular, treating regulated limit functions, and irregular, treating highly irregular functions (e.g., Dirichlet-type functions), in which a significant role is played by Ramsey's Theorem from formal logic. |
You may like...
Analysis of Medical Modalities for…
Varun Bajaj, G. R. Sinha
Hardcover
R4,206
Discovery Miles 42 060
Fractional-order Modeling of Nuclear…
Vishwesh Vyawahare, Paluri S. V. Nataraj
Hardcover
R2,661
Discovery Miles 26 610
Governance of Picture Archiving and…
Carrison K.S. Tong, Eric T.T. Wong
Hardcover
R5,612
Discovery Miles 56 120
Handbook of Natural Fibres - Volume 1…
Ryszard M. Kozlowski, Maria Mackiewicz-Talarczyk
Paperback
R5,712
Discovery Miles 57 120
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
Remote Sensing of Urban and Suburban…
Tarek Rashed, Carsten Jurgens
Hardcover
R2,485
Discovery Miles 24 850
|