![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.
Recent progress in research, teaching and communication has arisen
from the use of new tools in visualization. To be fruitful,
visualization needs precision and beauty. This book is a source of
mathematical illustrations by mathematicians as well as artists. It
offers examples in many basic mathematical fields including
polyhedra theory, group theory, solving polynomial equations,
dynamical systems and differential topology.
The content of this monograph is situated in the intersection of important branches of mathematics like the theory of one complex variable, algebraic geometry, low dimensional topology and, from the point of view of the techniques used, com- natorial group theory. The main tool comes from the Uniformization Theorem for Riemannsurfaces, whichrelatesthetopologyofRiemannsurfacesandholomorphic or antiholomorphic actions on them to the algebra of classical cocompact Fuchsian groups or, more generally, non-euclidean crystallographic groups. Foundations of this relationship were established by A. M. Macbeath in the early sixties and dev- oped later by, among others, D. Singerman. Another important result in Riemann surface theory is the connection between Riemannsurfacesandtheir symmetrieswith complexalgebraiccurvesandtheirreal forms. Namely, there is a well known functorial bijective correspondence between compact Riemann surfaces and smooth, irreducible complex projective curves. The fact that a Riemann surface has a symmetry means, under this equivalence, that the corresponding complex algebraic curve has a real form, that is, it is the complex- cation of a real algebraic curve. Moreover, symmetries which are non-conjugate in the full group of automorphisms of the Riemann surface, correspond to real forms which are birationally non-isomorphic over the reals. Furthermore, the set of points xedbyasymmetryishomeomorphictoaprojectivesmoothmodeloftherealform
This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books GH] and EW. The title tions. So this book (, Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible."
The aim of this book is a detailed study of topological effects related to continuity of the dependence of solutions on initial values and parameters. This allows us to develop cheaply a theory which deals easily with equations having singularities and with equations with multivalued right hand sides (differential inclusions). An explicit description of corresponding topological structures expands the theory in the case of equations with continuous right hand sides also. In reality, this is a new science where Ordinary Differential Equations, General Topology, Integration theory and Functional Analysis meet. In what concerns equations with discontinuities and differential inclu sions, we do not restrict the consideration to the Cauchy problem, but we show how to develop an advanced theory whose volume is commensurable with the volume of the existing theory of Ordinary Differential Equations. The level of the account rises in the book step by step from second year student to working scientist."
Author is well-known and established book author (all Serge Lang books are now published by Springer); Presents a brief introduction to the subject; All manifolds are assumed finite dimensional in order not to frighten some readers; Complete proofs are given; Use of manifolds cuts across disciplines and includes physics, engineering and economics
This book is a course in general topology, intended for students in the first year of the second cycle (in other words, students in their third univer sity year). The course was taught during the first semester of the 1979-80 academic year (three hours a week of lecture, four hours a week of guided work). Topology is the study of the notions of limit and continuity and thus is, in principle, very ancient. However, we shall limit ourselves to the origins of the theory since the nineteenth century. One of the sources of topology is the effort to clarify the theory of real-valued functions of a real variable: uniform continuity, uniform convergence, equicontinuity, Bolzano-Weierstrass theorem (this work is historically inseparable from the attempts to define with precision what the real numbers are). Cauchy was one of the pioneers in this direction, but the errors that slip into his work prove how hard it was to isolate the right concepts. Cantor came along a bit later; his researches into trigonometric series led him to study in detail sets of points of R (whence the concepts of open set and closed set in R, which in his work are intermingled with much subtler concepts). The foregoing alone does not justify the very general framework in which this course is set. The fact is that the concepts mentioned above have shown themselves to be useful for objects other than the real numbers."
From the 28th of February through the 3rd of March, 2001, the Department of Math ematics of the University of Florida hosted a conference on the many aspects of the field of Ordered Algebraic Structures. Officially, the title was "Conference on Lattice Ordered Groups and I-Rings," but its subject matter evolved beyond the limitations one might associate with such a label. This volume is officially the proceedings of that conference, although, likewise, it is more accurate to view it as a complement to that event. The conference was the fourth in wh at has turned into aseries of similar conferences, on Ordered Algebraic Structures, held in consecutive years. The first, held at the University of Florida in Spring, 1998, was a modest and informal affair. The fifth is in the final planning stages at this writing, for March 7-9, 2002, at Vanderbilt University. And although these events remain modest and reasonably informal, their scope has broadened, as they have succeeded in attracting mathematicians from other, related fields, as weIl as from more distant lands."
The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. Dynamical issues arise in equations which attempt to model phenomena that change with time, and the infinite dimensional aspects occur when forces that describe the motion depend on spatial variables. This book may serve as an entree for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations. It begins with a brief essay on the evolution of evolutionary equations and introduces the origins of the basic elements of dynamical systems, flow and semiflow.
This book collects survey papers in the fields of entropy, search and complexity, summarizing the latest developments in their respective areas. More than half of the papers belong to search theory which lies on the borderline of mathematics and computer science, information theory and combinatorics, respectively. The book will be useful to experienced researchers as well as young scientists and students both in mathematics and computer science.
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
Each undergraduate course of algebra begins with basic notions and results concerning groups, rings, modules and linear algebra. That is, it begins with simple notions and simple results. Our intention was to provide a collection of exercises which cover only the easy part of ring theory, what we have named the "Basics of Ring Theory." This seems to be the part each student or beginner in ring theory (or even algebra) should know - but surely trying to solve as many of these exercises as possible independently. As difficult (or impossible) as this may seem, we have made every effort to avoid modules, lattices and field extensions in this collection and to remain in the ring area as much as possible. A brief look at the bibliography obviously shows that we don't claim much originality (one could name this the folklore of ring theory) for the statements of the exercises we have chosen (but this was a difficult task: indeed, the 28 titles contain approximatively 15.000 problems and our collection contains only 346). The real value of our book is the part which contains all the solutions of these exercises. We have tried to draw up these solutions as detailed as possible, so that each beginner can progress without skilled help. The book is divided in two parts each consisting of seventeen chapters, the first part containing the exercises and the second part the solutions.
The present volume contains the proceedings of the workshop on "Minimax Theory and Applications" that was held during the week 30 September - 6 October 1996 at the "G. Stampacchia" International School of Mathematics of the "E. Majorana" Centre for Scientific Cul ture in Erice (Italy) . The main theme of the workshop was minimax theory in its most classical meaning. That is to say, given a real-valued function f on a product space X x Y, one tries to find conditions that ensure the validity of the equality sup inf f(x, y) = inf sup f(x, y). yEY xEX xEX yEY This is not an appropriate place to enter into the technical details of the proofs of minimax theorems, or into the history of the contribu tions to the solution of this basic problem in the last 7 decades. But we do want to stress its intrinsic interest and point out that, in spite of its extremely simple formulation, it conceals a great wealth of ideas. This is clearly shown by the large variety of methods and tools that have been used to study it. The applications of minimax theory are also extremely interesting. In fact, the need for the ability to "switch quantifiers" arises in a seemingly boundless range of different situations. So, the good quality of a minimax theorem can also be judged by its applicability. We hope that this volume will offer a rather complete account of the state of the art of the subject."
Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x ,...,x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[,u (x)=r (x) = sgn(sin(2 ?x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples,thefunctionu convergesinsomesenseto n ameasure on ? xR, called Young measure. In Functional Analysis formulation, this is the narrow convergence to of the image of the Lebesgue measure on ? by ? ? (?,u (?)). In the disintegrated form ( ) ,the parametrized measure n ? ??? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure , it often happens that for any k and any A in the algebra generated by X ,...,X , the conditional law L(X|A) still converges to (see Chapter 9) 1 k n which means 1 ??? C (R) ?(X (?))dP(?)?? ?d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?,X (?)), n X n (1l ??)d? ?? (1l ??)d[P? ].
Our motivation for gathering the material for this book over aperiod of seven years has been to unify and simplify ideas wh ich appeared in a sizable number of re search articles during the past two decades. More specifically, it has been our aim to provide the categorical foundations for extensive work that was published on the epimorphism- and cowellpoweredness problem, predominantly for categories of topological spaces. In doing so we found the categorical not ion of closure operators interesting enough to be studied for its own sake, as it unifies and describes other significant mathematical notions and since it leads to a never-ending stream of ex amples and applications in all areas of mathematics. These are somewhat arbitrarily restricted to topology, algebra and (a small part of) discrete mathematics in this book, although other areas, such as functional analysis, would provide an equally rich and interesting supply of examples. We also had to restrict the themes in our theoretical exposition. In spite of the fact that closure operators generalize the uni versal closure operations of abelian category theory and of topos- and sheaf theory, we chose to mention these aspects only en passant, in favour of the presentation of new results more closely related to our original intentions. We also needed to refrain from studying topological concepts, such as compactness, in the setting of an arbitrary closure-equipped category, although this topic appears prominently in the published literature involving closure operators."
The book covers topics in the theory of algebraic transformation groups and algebraic varieties which are very much at the frontier of mathematical research.
This IMA Volume in Mathematics and its Applications FRACTALS IN MULTIMEDIA is a result of a very successful three-day minisymposium on the same title. The event was an integral part of the IMA annual program on Mathemat ics in Multimedia, 2000-2001. We would like to thank Michael F. Barnsley (Department of Mathematics and Statistics, University of Melbourne), Di etmar Saupe (Institut fUr Informatik, UniversiUit Leipzig), and Edward R. Vrscay (Department of Applied Mathematics, University of Waterloo) for their excellent work as organizers of the meeting and for editing the proceedings. We take this opportunity to thank the National Science Foundation for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume grew out of a meeting on Fractals in Multimedia held at the IMA in January 2001. The meeting was an exciting and intense one, focused on fractal image compression, analysis, and synthesis, iterated function systems and fractals in education. The central concerns of the meeting were to establish within these areas where we are now and to develop a vision for the future."
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.
Helmholtz's seminal paper on vortex motion (1858) marks the beginning of what is now called topological fluid mechanics.After 150 years of work, the field has grown considerably. In the last several decades unexpected developments have given topological fluid mechanics new impetus, benefiting from the impressive progress in knot theory and geometric topology on the one hand, and in mathematical and computational fluid dynamics on the other. This volume contains a wide-ranging collection of up-to-date, valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics, including topological vortex dynamics and magnetohydrodynamics, integrability issues, Hamiltonian structures and singularity formation, to DNA tangles and knotted DNAs in sedimentation. A substantial introductory chapter on knots and links, covering elements of modern braid theory and knot polynomials, as well as more advanced topics in knot classification, provides an invaluable addition to this material.
A. Banyaga: On the group of diffeomorphisms preserving an exact symplectic.- G.A. Fredricks: Some remarks on Cauchy-Riemann structures.- A. Haefliger: Differentiable Cohomology.- J.N. Mather: On the homology of Haefliger 's classifying space.- P. Michor: Manifolds of differentiable maps.- V. Poenaru: Some remarks on low-dimensional topology and immersion theory.- F. Sergeraert: La classe de cobordisme des feuilletages de Reeb de S est nulle.- G. Wallet: Invariant de Godbillon-Vey et diff omorphismes commutants.
The Shape of Space, Third Edition maintains the standard of excellence set by the previous editions. This lighthearted textbook covers the basic geometry and topology of two- and three-dimensional spaces-stretching students' minds as they learn to visualize new possibilities for the shape of our universe. Written by a master expositor, leading researcher in the field, and MacArthur Fellow, its informal exposition and engaging exercises appeal to an exceptionally broad audience, from liberal arts students to math undergraduate and graduate students looking for a clear intuitive understanding to supplement more formal texts, and even to laypeople seeking an entertaining self-study book to expand their understanding of space. Features of the Third Edition: Full-color figures throughout "Picture proofs" have replaced algebraic proofs Simpler handles-and-crosscaps approach to surfaces Updated discussion of cosmological applications Intuitive examples missing from many college and graduate school curricula About the Author: Jeffrey R. Weeks is a freelance geometer living in Canton, New York. With support from the U.S. National Science Foundation, the MacArthur Foundation and several science museums, his work spans pure mathematics, applications in cosmology and-closest to his heart-exposition for the general public.
This third of the three-volume book is targeted as a basic course in algebraic topology and topology for fiber bundles for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, and algebra. Topics covered in this volume include homotopy theory, homology and cohomology theories, homotopy theory of fiber bundles, Euler characteristic, and the Betti number. It also includes certain classic problems such as the Jordan curve theorem along with the discussions on higher homotopy groups and establishes links between homotopy and homology theories, axiomatic approach to homology and cohomology as inaugurated by Eilenberg and Steenrod. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power and active learning of the subject, all the while covering a wide range of theory and applications in a balanced unified way.
Since the early part of the 20th century, topology has gradually spread to many other branches of mathematics, and this book demonstrates how the subject continues to play a central role in the field. Written by a world-renowned mathematician, this classic text traces the history of algebraic topology beginning with its creation in the early 1900s and describes in detail the important theories that were discovered before 1960. Through the work of Poincare, de Rham, Cartan, Hureqicz, and many others, this historical book also focuses on the emergence of new ideas and methods that have led 21st-century mathematicians towards new research directions. This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincare and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it (MathSciNet) The author] traces the development of algebraic and differential topology from the innovative work by Poincare at the turn of the century to the period around 1960. He] has given a superb account of the growth of these fields. The details are interwoven with the narrative in a very pleasant fashion. The author] has previous written histories of functional analysis and of algebraic geometry, but neither book was on such a grand scale as this one. He has made it possible to trace the important steps in the growth of algebraic and differential topology, and to admire the hard work and major advances made by the founders. (Zentralblatt MATH) |
You may like...
The Pawfect Guide to Thinking Like a Dog…
Emma Milne, Karen Wild
Paperback
Group Theory In Physics: Problems And…
Michael Aivazis, Wu-Ki Tung
Paperback
R602
Discovery Miles 6 020
Catalogue of the Specimens of Mammalia…
British Museum (Natural History). Dept.
Hardcover
R860
Discovery Miles 8 600
Hydrogen Transfer Reactions - Reductions…
Gabriela Guillena, Diego J. Ramon
Hardcover
R8,670
Discovery Miles 86 700
|