![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > General
Based on the Working Conference on Boundary Control and Boundary Variation held in Sophia-Antipolis, France, this work provides important examinations of shape optimization and boundary control of hyperbolic systems, including free boundary problems and stabilization. It offers a new approach to large and nonlinear variation of the boundary using global Eulerian co-ordinates and intrinsic geometry.
This volume contains papers presented at the 27th Taniguchi International Symposium, held in Sanda, Japan - focusing on the study of moduli spaces of various geometric objects such as Einstein metrics, conformal structures, and Yang-Mills connections from algebraic and analytic points of view.;Written by over 15 authorities from around the world, Einstein Metrics and Yang-Mills Connections...: discusses current topics in Kaehler geometry, including Kaehler-Einstein metrics, Hermitian-Einstein connections and a new Kaehler version of Kawamata-Viehweg's vanishing theorem; explores algebraic geometric treatments of holomorphic vector bundles on curves and surfaces; addresses nonlinear problems related to Mong-Ampere and Yamabe-type equations as well as nonlinear equations in mathematical physics; and covers interdisciplinary topics such as twistor theory, magnetic monopoles, KP-equations, Einstein and Gibbons-Hawking metrics, and supercommutative algebras of superdifferential operators.;Providing a wide array of original research articles not published elsewhere Einstein Metrics and Yang-Mills Connections is for research mathematicians, including topologists and differential and algebraic geometers, theoretical physicists, and graudate-level students in these disciplines.
Classical Complex Analysis, available in two volumes, provides a clear, broad and solid introduction to one of the remarkable branches of exact science, with an emphasis on the geometric aspects of analytic functions. Volume 2 begins with analytic continuation. The Riemann mapping theorem is proved and used in solving Dirichlet's problem for an open disk and, hence, a class of general domains via Perron's method. Finally, proof of the uniformization theorem of Riemann surfaces is given. The book is rich in contents, figures, examples and exercises. It is self-contained and is designed for a variety of usages and motivations concerning advanced studies. It can be used both as a textbook for undergraduate and graduate students, and as a reference book in general.
This book presents original problems from graduate courses in pure and applied mathematics and even small research topics, significant theorems and information on recent results. It is helpful for specialists working in differential equations.
This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
Offering the insights of L.S. Pontryagin, one of the foremost thinkers in modern mathematics, the second volume in this four-volume set examines the nature and processes that make up topological groups. Already hailed as the leading work in this subject for its abundance of examples and its thorough explanations, the text is arranged so that readers can follow the material either sequentially or schematically. Stand-alone chapters cover such topics as topological division rings, linear representations of compact topological groups, and the concept of a lie group.
Ten amazing curves personally selected by one of today's most important math writers Curves for the Mathematically Curious is a thoughtfully curated collection of ten mathematical curves, selected by Julian Havil for their significance, mathematical interest, and beauty. Each chapter gives an account of the history and definition of one curve, providing a glimpse into the elegant and often surprising mathematics involved in its creation and evolution. In telling the ten stories, Havil introduces many mathematicians and other innovators, some whose fame has withstood the passing of years and others who have slipped into comparative obscurity. You will meet Pierre Bezier, who is known for his ubiquitous and eponymous curves, and Adolphe Quetelet, who trumpeted the ubiquity of the normal curve but whose name now hides behind the modern body mass index. These and other ingenious thinkers engaged with the challenges, incongruities, and insights to be found in these remarkable curves-and now you can share in this adventure. Curves for the Mathematically Curious is a rigorous and enriching mathematical experience for anyone interested in curves, and the book is designed so that readers who choose can follow the details with pencil and paper. Every curve has a story worth telling.
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.
This book gives an account of the fundamental results in geometric stability theory, a subject that has grown out of categoricity and classification theory. This approach studies the fine structure of models of stable theories, using the geometry of forking; this often achieves global results relevant to classification theory. Topics range from Zilber-Cherlin classification of infinite locally finite homogenous geometries, to regular types, their geometries, and their role in superstable theories. The structure and existence of definable groups is featured prominently, as is work by Hrushovski. The book is unique in the range and depth of material covered and will be invaluable to anyone interested in modern model theory.
This book presents to the reader a modern axiomatic construction of three-dimensional Euclidean geometry in a rigorous and accessible form. It is helpful for high school teachers who are interested in the modernization of the teaching of geometry.
This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.
This book introduces advanced undergraduates to Riemannian geometry and mathematical general relativity. The overall strategy of the book is to explain the concept of curvature via the Jacobi equation which, through discussion of tidal forces, further helps motivate the Einstein field equations. After addressing concepts in geometry such as metrics, covariant differentiation, tensor calculus and curvature, the book explains the mathematical framework for both special and general relativity. Relativistic concepts discussed include (initial value formulation of) the Einstein equations, stress-energy tensor, Schwarzschild space-time, ADM mass and geodesic incompleteness. The concluding chapters of the book introduce the reader to geometric analysis: original results of the author and her undergraduate student collaborators illustrate how methods of analysis and differential equations are used in addressing questions from geometry and relativity. The book is mostly self-contained and the reader is only expected to have a solid foundation in multivariable and vector calculus and linear algebra. The material in this book was first developed for the 2013 summer program in geometric analysis at the Park City Math Institute, and was recently modified and expanded to reflect the author's experience of teaching mathematical general relativity to advanced undergraduates at Lewis & Clark College. This book is published in cooperation with IAS/Park City Mathematics Institute.
Homogeneous spaces of linear algebraic groups lie at the
crossroads of algebraic geometry, theory of algebraic groups,
classical projective and enumerative geometry, harmonic analysis,
and representation theory. By standard reasons of algebraic
geometry, in order to solve various problems on a homogeneous
space, it is natural and helpful to compactify it while keeping
track of the group action, i.e., to consider equivariant
completions or, more generally, open embeddings of a given
homogeneous space. Such equivariant embeddings are the subject of
this book. We focus on the classification of equivariant embeddings
in terms of certain data of "combinatorial" nature (the Luna-Vust
theory) and description of various geometric and
representation-theoretic properties of these varieties based on
these data. The class of spherical varieties, intensively studied
during the last three decades, is of special interest in the scope
of this book. Spherical varieties include many classical examples,
such as Grassmannians, flag varieties, and varieties of quadrics,
as well as well-known toric varieties. We have attempted to cover
most of the important issues, including the recent substantial
progress obtained in and around the theory of spherical
varieties.
The book explains concepts and ideas of mathematics and physics that are relevant for advanced students and researchers of condensed matter physics. With this aim, a brief intuitive introduction to many-body theory is given as a powerful qualitative tool for understanding complex systems. The important emergent concept of a quasiparticle is then introduced as a way to reduce a many-body problem to a single particle quantum problem. Examples of quasiparticles in graphene, superconductors, superfluids and in a topological insulator on a superconductor are discussed.The mathematical idea of self-adjoint extension, which allows short distance information to be included in an effective long distance theory through boundary conditions, is introduced through simple examples and then applied extensively to analyse and predict new physical consequences for graphene.The mathematical discipline of topology is introduced in an intuitive way and is then combined with the methods of differential geometry to show how the emergence of gapless states can be understood. Practical ways of carrying out topological calculations are described.
This book is a collection of articles from several world-class researchers, and is inspired by Sir Roger Penrose's work. It gives an overview of the interaction between geometry and physics, from which many important developments have emerged. The volume collects together ideas from across the physical sciences, and indicates the many applications of geometrical ideas and techniques across mathematics and mathematical physics.
This English version of the path-breaking French book on this
subject gives the definitive treatment of the revolutionary
approach to measure theory, geometry, and mathematical physics
developed by Alain Connes. Profusely illustrated and invitingly
written, this book is ideal for anyone who wants to know what
noncommutative geometry is, what it can do, or how it can be used
in various areas of mathematics, quantization, and elementary
particles and fields.
Theory of valuations on convex sets is a classical part of convex geometry which goes back at least to the positive solution of the third Hilbert problem by M. Dehn in 1900. Since then the theory has undergone a multifaceted development. The author discusses some of Hadwiger's results on valuations on convex compact sets that are continuous in the Hausdorff metric. The book also discusses the Klain-Schneider theorem as well as the proof of McMullen's conjecture, which led subsequently to many further applications and advances in the theory. The last section gives an overview of more recent developments in the theory of translation-invariant continuous valuations, some of which turn out to be useful in integral geometry. This book grew out of lectures that were given in August 2015 at Kent State University in the framework of the NSF CBMS conference ``Introduction to the Theory of Valuations on Convex Sets''. Only a basic background in general convexity is assumed.
This text, the second of two volumes, builds on the foundational material on ergodic theory and geometric measure theory provided in Volume I, and applies all the techniques discussed to describe the beautiful and rich dynamics of elliptic functions. The text begins with an introduction to topological dynamics of transcendental meromorphic functions, before progressing to elliptic functions, discussing at length their classical properties, measurable dynamics and fractal geometry. The authors then look in depth at compactly non-recurrent elliptic functions. Much of this material is appearing for the first time in book or paper form. Both senior and junior researchers working in ergodic theory and dynamical systems will appreciate what is sure to be an indispensable reference.
The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT( ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
This book is an introduction to elementary topology presented in an intuitive way, emphasizing the visual aspect. Examples of nontrivial and often unexpected topological phenomena acquaint the reader with the picturesque world of knots, links, vector fields, and two-dimensional surfaces. The book begins with definitions presented in a tangible and perceptible way, on an everyday level, and progressively makes them more precise and rigorous, eventually reaching the level of fairly sophisticated proofs. This allows meaningful problems to be tackled from the outset. Another unusual trait of this book is that it deals mainly with constructions and maps, rather than with proofs that certain maps and constructions do or do not exist. The numerous illustrations are an essential feature. The book is accessible not only to undergraduates but also to high school students and will interest any reader who has some feeling for the visual elegance of geometry and topology.
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdos's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales. |
![]() ![]() You may like...
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,384
Discovery Miles 33 840
Gromov-Witten Theory of Quotients of…
Hiroshi Iritani, Todor Milanov, …
Paperback
R2,215
Discovery Miles 22 150
|