![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > General
This is the award-winning monograph of the Sunyer i Balaguer Prize 1999. The book presents recently discovered connections between Artin s braid groups and left self-distributive systems, which are sets equipped with a binary operation satisfying the identity x(yz) = (xy)(xz). Although not a comprehensive course, the exposition is self-contained, and many basic results are established. In particular, the first chapters include a thorough algebraic study of Artin s braid groups."
From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." -Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. ...Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." -Mathematical Reviews
One service mathematics has rendered the 'Et moi, "0' si j'avait su oomment en revenir. human race. It has put common sense back je n'y serais point aile: ' Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'el: re of this series."
The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker. Moreover, a careful, categorical study of the most important topological notions and concepts is given - e.g., density, closedness of extremal subobjects, Hausdorff's separation axiom, regularity, and compactness. An interpretation of these structures, not only by the ordinary filter monad, but also by many valued filter monads, underlines the richness of the explained theory and gives rise to new concrete concepts of topological spaces - so-called many valued topological spaces. Hence, many valued topological spaces play a significant role in various fields of mathematics - e.g., in the theory of locales, convergence spaces, stochastic processes, and smooth Borel probability measures. In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preua * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina
This book contains contributions from a workshop on topology and geometry of polymers, held at the IMA in June 1996, which brought together topologists, combinatorialists, theoretical physicists and polymer scientists, with a common interest in polymer topology. Polymers can be highly self-entangled even in dilute solution. In the melt the inter- and intra-chain entanglements can dominate the rheological properties of these phenomena. Although the possibility of knotting in ring polymers has been recognized for more than thirty years it is only recently that the powerful methods of algebraic topology have been used in treating models of polymers. This book contains a series of chapters which review the current state of the field and give an up to date account of what is known and perhaps more importantly, what is still unknown. The field abounds with open problems. The book is of interest to workers in polymer statistical mechanics but will also be useful as an introduction to topological methods for polymer scientists, and will introduce mathematicians to an area of science where topological approaches are making a substantial contribution.
Applying functional analysis and operator theory to some concrete asymptotic problems of linear algebra, this book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behaviour of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis, including classical topics as well as results and methods from the last few years. Though employing modern tools, the exposition is elementary and points out the mathematical background behind some interesting phenomena encountered with large Toeplitz matrices. Accessible to readers with basic knowledge in functional analysis, the book addresses graduates, teachers, and researchers and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
1.1 Background The subject of this book is Morse homology as a combination of relative Morse theory and Conley's continuation principle. The latter will be useda s an instrument to express the homology encoded in a Morse complex associated to a fixed Morse function independent of this function. Originally, this type of Morse-theoretical tool was developed by Andreas Floer in order to find a proof of the famous Arnold conjecture, whereas classical Morse theory turned out to fail in the infinite-dimensional setting. In this framework, the homological variant of Morse theory is also known as Floer homology. This kind of homology theory is the central topic of this book. But first, it seems worthwhile to outline the standard Morse theory. 1.1.1 Classical Morse Theory The fact that Morse theory can be formulated in a homological way is by no means a new idea. The reader is referred to the excellent survey paper by Raoul Bott [Bol.
This volume contains reviewed papers from the 1997 IUTAM Symposium, presenting the latest results from leading scientists within the field of detection and simulation of organized flow structures. It describes various aspects of complex, organized flow motion, including topics from decomposition techniques to topological concepts.
This volume contains a selection of papers presented at the 1991 Conrad Conference, held in Gainesville, Florida, USA, in December, 1991. Together, these give an overview of some recent advances in the area of ordered algebraic structures. The first part of the book is devoted to ordered permutation groups and universal, as well as model-theoretic, aspects. The second part deals with material variously connected to general topology and functional analysis. Collectively, the contents of the book demonstrate the wide applicability of order-theoretic methods, and how ordered algebraic structures have connections with many research disciplines. For researchers and graduate students whose work involves ordered algebraic structures.
This Seminar began in Moscow in November 1943 and has continued without interruption up to the present. We are happy that with this vol ume, Birkhiiuser has begun to publish papers of talks from the Seminar. It was, unfortunately, difficult to organize their publication before 1990. Since 1990, most of the talks have taken place at Rutgers University in New Brunswick, New Jersey. Parallel seminars were also held in Moscow, and during July, 1992, at IRES in Bures-sur-Yvette, France. Speakers were invited to submit papers in their own style, and to elaborate on what they discussed in the Seminar. We hope that readers will find the diversity of styles appealing, and recognize that to some extent this reflects the diversity of styles in a mathematical society. The principal aim was to have interesting talks, even if the topic was not especially popular at the time. The papers listed in the Table of Contents reflect some of the rich variety of ideas presented in the Seminar. Not all the speakers submit ted papers. Among the interesting talks that influenced the seminar in an important way, let us mention, for example, that of R. Langlands on per colation theory and those of J. Conway and J. McKay on sporadic groups. In addition, there were many extemporaneous talks as well as short discus sions."
Visualization and mathematics have begun a fruitful relationship,
establishing links between problems and solutions of both fields.
In some areas of mathematics, like differential geometry and
numerical mathematics, visualization techniques are applied with
great success. However, visualization methods are relying heavily
on mathematical concepts.
This book contains a collection of articles summarizing together the state of knowl- edge in a broad portion of modern homotopy theory. These articles were assembled during 1998 and 1999, on the occasion of an emphasis semester organized by the Centre de Recerca Matematica (CRM) and its highlight, the 1998 Barcelona Con- ference on Algebraic Topology (BCAT). First of all, we are indebted to all the authors for submitting their work, and to the referees for their help in the selec- tion and for their generous contribution to the content of the articles. Many talks given during the CRM semester or at the conference focused on aspects of the following topics: abstract stable homotopy, model categories, homotopical localizations and cellular approximations, p-compact groups, mod- ules over the Steenrod algebra, classifying spaces for proper actions of discrete groups, K-theory and other generalized cohomology theories, cohomology of fi- nite and profinite groups, Hochschild homology, configuration spaces, Lusternik- Schnirelmann category, stable and unstable splittings. Other talks treated multi- disciplinary subjects related to quantum field theory, differential geometry, homo- topical dynamics, tilings, and various aspects of group theory. In addition, an advanced course on Classifying Spaces and Cohomology of Groups was organized by the CRM in the days preceding the conference. Lecture notes from this course will be published by Birkhauser Verlag as the first volume of a newly created CRM Advanced Course series.
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
Systems with sub-processes evolving on many different time scales are ubiquitous in applications: chemical reactions, electro-optical and neuro-biological systems, to name just a few. This volume contains papers that expose the state of the art in mathematical techniques for analyzing such systems. Recently developed geometric ideas are highlighted in this work that includes a theory of relaxation-oscillation phenomena in higher dimensional phase spaces. Subtle exponentially small effects result from singular perturbations implicit in certain multiple time scale systems. Their role in the slow motion of fronts, bifurcations, and jumping between invariant tori are all explored here. Neurobiology has played a particularly stimulating role in the development of these techniques and one paper is directed specifically at applying geometric singular perturbation theory to reveal the synchrony in networks of neural oscillators.
Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology.
The papers contained in this volume are an indication of the topics th discussed and the interests of the participants of The 9 International Conference on Probability in Banach Spaces, held at Sandjberg, Denmark, August 16-21, 1993. A glance at the table of contents indicates the broad range of topics covered at this conference. What defines research in this field is not so much the topics considered but the generality of the ques tions that are asked. The goal is to examine the behavior of large classes of stochastic processes and to describe it in terms of a few simple prop erties that the processes share. The reward of research like this is that occasionally one can gain deep insight, even about familiar processes, by stripping away details, that in hindsight turn out to be extraneous. A good understanding about the disciplines involved in this field can be obtained from the recent book, Probability in Banach Spaces, Springer-Verlag, by M. Ledoux and M. Thlagrand. On page 5, of this book, there is a list of previous conferences in probability in Banach spaces, including the other eight international conferences. One can see that research in this field over the last twenty years has contributed significantly to knowledge in probability and has had important applications in many other branches of mathematics, most notably in statistics and functional analysis."
Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly."
gentle introduction to the subject, leading the reader to understand the notion of what is important in topology with regard to geometry. Divided into three sections - The line and the plane, Metric spaces and Topological spaces -, the book eases the move into higher levels of abstraction. Students are thereby informally assisted in learning new ideas while remaining on familiar territory. The authors do not assume previous knowledge of axiomatic approach or set theory. Similarly, they have restricted the mathematical vocabulary in the book so as to avoid overwhelming the reader, and the concept of convergence is employed to allow students to focus on a central theme while moving to a natural understanding of the notion of topology. The pace of the book is relaxed with gradual acceleration: the first nine sections form a balanced course in metric spaces for undergraduates while also containing ample material for a two-semester graduate course. Finally, the book illustrates the many connections between topology and other subjects, such as analysis and set theory, via the inclusion of "Extras" at the end of each chapter presenting a brief foray outside topology.
" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed."
Inverse limits with set-valued functions are quickly becoming a popular topic of research due to their potential applications in dynamical systems and economics. This brief provides a concise introduction dedicated specifically to such inverse limits. The theory is presented along with detailed examples which form the distinguishing feature of this work. The major differences between the theory of inverse limits with mappings and the theory with set-valued functions are featured prominently in this book in a positive light. The reader is assumed to have taken a senior level course in analysis and a basic course in topology. Advanced undergraduate and graduate students, and researchers working in this area will find this brief useful.
Ten amazing curves personally selected by one of today's most important math writers Curves for the Mathematically Curious is a thoughtfully curated collection of ten mathematical curves, selected by Julian Havil for their significance, mathematical interest, and beauty. Each chapter gives an account of the history and definition of one curve, providing a glimpse into the elegant and often surprising mathematics involved in its creation and evolution. In telling the ten stories, Havil introduces many mathematicians and other innovators, some whose fame has withstood the passing of years and others who have slipped into comparative obscurity. You will meet Pierre Bezier, who is known for his ubiquitous and eponymous curves, and Adolphe Quetelet, who trumpeted the ubiquity of the normal curve but whose name now hides behind the modern body mass index. These and other ingenious thinkers engaged with the challenges, incongruities, and insights to be found in these remarkable curves-and now you can share in this adventure. Curves for the Mathematically Curious is a rigorous and enriching mathematical experience for anyone interested in curves, and the book is designed so that readers who choose can follow the details with pencil and paper. Every curve has a story worth telling.
This book is an exposition of the technique of surgery on simply-connected smooth manifolds. Systematic study of differentiable manifolds using these ideas was begun by Milnor [45] and Wallace [68] and developed extensively in the last ten years. It is now possible to give a reasonably complete theory of simply-connected manifolds of dimension ~ 5 using this approach and that is what I will try to begin here. The emphasis has been placed on stating and proving the general results necessary to apply this method in various contexts. In Chapter II, these results are stated, and then applications are given to characterizing the homotopy type of differentiable manifolds and classifying manifolds within a given homotopy type. This theory was first extensively developed in Kervaire and Milnor [34] in the case of homotopy spheres, globalized by S. P. Novikov [49] and the author [6] for closed 1-connected manifolds, and extended to the bounded case by Wall [65] and Golo [23]. The thesis of Sullivan [62] reformed the theory in an elegant way in terms of classifying spaces.
Most texts on algebraic topology emphasize homological algebra, with topological considerations limited to a few propositions about the geometry of simplicial complexes. There is much to be gained however, by using the more sophisticated concept of cell (CW) complex. Even for simple computations, this concept ordinarily allows us to bypass much tedious algebra and often gives geometric insight into the homology and homotopy theory of a space. For example, the easiest way to calculate and interpret the homology of Cpn, complex projective n-space, is by means of a cellular decomposition with only n+ 1 cells. Also, by a suitable construction we can "realize" the sin gular complex of a space as a CW complex and perhaps thus give a more geometric basis for some arguments involving singular homology theory for general spaces and a more concrete basis for singular ho motopy type. As a fInal example, if we start with the category of sim plicial complexes and maps, common topological constructions such as the formation of product spaces, identifIcation spaces, and adjunction spaces lead us often into the category of CW complexes. These topics, among others, are usually not treated thoroughly in a standard text, and the interested student must fInd them scattered through the literature. This book is a study of CW complexes. It is intended to supplement and be used concurrently with a standard text on algebraic topology." |
![]() ![]() You may like...
Gromov-Witten Theory of Quotients of…
Hiroshi Iritani, Todor Milanov, …
Paperback
R2,210
Discovery Miles 22 100
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,252
Discovery Miles 32 520
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,187
Discovery Miles 21 870
Ten Mathematical Essays on Approximation…
J. Ferrera, J. Lopez-Gomez, …
Hardcover
R4,762
Discovery Miles 47 620
|