![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
Spectral sequences are among the most elegant, most powerful, and most complicated methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first third of the book treats the algebraic foundations for this sort of homological algebra, starting from informal calculations, to give the novice a familiarity with the range of applications possible. The heart of the book is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
'The book is an engaging and influential collection of significant contributions from an assembly of world expert leaders and pioneers from different fields, working at the interface between topology and physics or applications of topology to physical systems ... The book explores many interesting and novel topics that lie at the intersection between gravity, quantum fields, condensed matter, physical cosmology and topology ... A rich, well-organized, and comprehensive overview of remarkable and insightful connections between physics and topology is here made available to the physics reader.'Contemporary PhysicsSince its birth in Poincare's seminal 1894 'Analysis Situs', topology has become a cornerstone of mathematics. As with all beautiful mathematical concepts, topology inevitably - resonating with that Wignerian principle of the effectiveness of mathematics in the natural sciences - finds its prominent role in physics. From Chern-Simons theory to topological quantum field theory, from knot invariants to Calabi-Yau compactification in string theory, from spacetime topology in cosmology to the recent Nobel Prize winning work on topological insulators, the interactions between topology and physics have been a triumph over the past few decades.In this eponymous volume, we are honoured to have contributions from an assembly of grand masters of the field, guiding us with their world-renowned expertise on the subject of the interplay between 'Topology' and 'Physics'. Beginning with a preface by Chen Ning Yang on his recollections of the early days, we proceed to a novel view of nuclei from the perspective of complex geometry by Sir Michael Atiyah and Nick Manton, followed by an entree toward recent developments in two-dimensional gravity and intersection theory on the moduli space of Riemann surfaces by Robbert Dijkgraaf and Edward Witten; a study of Majorana fermions and relations to the Braid group by Louis H Kauffman; a pioneering investigation on arithmetic gauge theory by Minhyong Kim; an anecdote-enriched review of singularity theorems in black-hole physics by Sir Roger Penrose; an adventure beyond anyons by Zhenghan Wang; an apercu on topological insulators from first-principle calculations by Haijun Zhang and Shou-Cheng Zhang; finishing with synopsis on quantum information theory as one of the four revolutions in physics and the second quantum revolution by Xiao-Gang Wen. We hope that this book will serve to inspire the research community.
The author uses modern methods from computational group theory and representation theory to treat this classical topic of function theory. He provides classifications of all automorphism groups up to genus 48. The book also classifies the ordinary characters for several groups, arising from the action of automorphisms on the space of holomorphic abelian differentials of a compact Reimann surface. This book is suitable for graduate students and researchers in group theory, representation theory, complex analysis and computer algebra.
In this superb topology text, the readers not only learn about knot theory, 3-dimensional manifolds, and the topology of embedded graphs, but also their role in understanding molecular structures. Most results described in the text are motivated by the questions of chemists or molecular biologists, though they often go beyond answering the original question asked. No specific mathematical or chemical prerequisites are required. The text is enhanced by nearly 200 illustrations and 100 exercises. With this fascinating book, undergraduate mathematics students escape the world of pure abstract theory and enter that of real molecules, while chemists and biologists find simple and clear but rigorous definitions of mathematical concepts they handle intuitively in their work.
The study of geodesic flows on homogenous spaces is an area of research that has yielded some fascinating developments. This book, first published in 2000, focuses on many of these, and one of its highlights is an elementary and complete proof (due to Margulis and Dani) of Oppenheim's conjecture. Also included here: an exposition of Ratner's work on Raghunathan's conjectures; a complete proof of the Howe-Moore vanishing theorem for general semisimple Lie groups; a new treatment of Mautner's result on the geodesic flow of a Riemannian symmetric space; Mozes' result about mixing of all orders and the asymptotic distribution of lattice points in the hyperbolic plane; Ledrappier's example of a mixing action which is not a mixing of all orders. The treatment is as self-contained and elementary as possible. It should appeal to graduate students and researchers interested in dynamical systems, harmonic analysis, differential geometry, Lie theory and number theory.
The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.
Hex: The Full Story is for anyone - hobbyist, professional, student, teacher - who enjoys board games, game theory, discrete math, computing, or history. hex was discovered twice, in 1942 by Piet Hein and again in 1949 by John F. nash. How did this happen? Who created the puzzle for Hein's Danish newspaper column? How are Martin Gardner, David Gale, Claude Shannon, and Claude Berge involved? What is the secret to playing Hex well? The answers are inside... Features New documents on Hein's creation of Hex, the complete set of Danish puzzles, and the identity of their composer Chapters on Gale's game Bridg-it, the game Rex, computer Hex, open Hex problems, and more Dozens of new puzzles and solutions Study guide for Hex players Supplemenetary text for a course in game theory, discrete math, computer science, or science history
One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily
This book is the first volume in a two-volume set, which will provide the complete proof of classification of two important classes of geometries, closely related to each other: Petersen and tilde geometries. There is an infinite family of tilde geometries associated with nonsplit extensions of symplectic groups over a field of two elements. Besides that there are twelve exceptional Petersen and tilde geometries. These exceptional geometries are related to sporadic simple groups, including the famous Monster group and this volume gives a construction for each of the Petersen and tilde geometries that provides an independent existence proof for the corresponding automorphism group. Important applications of Petersen and tilde geometries are considered, including the so-called Y-presentations for the Monster and related groups, and a complete identification of Y-groups is given. This is an essential purchase for researchers in finite group theory, finite geometries and algebraic combinatorics.
The field of convex geometry has become a fertile subject of mathematical activity in the past few decades. This exposition, examining in detail those topics in convex geometry that are concerned with Euclidean space, is enriched by numerous examples, illustrations, and exercises, with a good bibliography and index. The theory of intrinsic volumes for convex bodies, along with the Hadwiger characterization theorems, whose proofs are based on beautiful geometric ideas such as the rounding theorems and the Steiner formula, are treated in Part 1. In Part 2 the reader is given a survey on curvature and surface area measures and extensions of the class of convex bodies. Part 3 is devoted to the important class of star bodies and selectors for convex and star bodies, including a presentation of two famous problems of geometric tomography: the Shephard problem and the Busemanna "Petty problem. Selected Topics in Convex Geometry requires of the reader only a basic knowledge of geometry, linear algebra, analysis, topology, and measure theory. The book can be used in the classroom setting for graduates courses or seminars in convex geometry, geometric and convex combinatorics, and convex analysis and optimization. Researchers in pure and applied areas will also benefit from the book.
When originally published, this text was the first general account of Hausdorff measures, a subject that has important applications in many fields of mathematics. The first of the three chapters contains an introduction to measure theory, paying particular attention to the study of non-sigma-finite measures. The second chapter develops the most general aspects of the theory of Hausdorff measures, and the final chapter gives a general survey of applications of Hausdorff measures followed by detailed accounts of two special applications. This new edition has a foreword by Kenneth Falconer outlining the developments in measure theory since this book first appeared. This book is ideal for graduate mathematicians with no previous knowledge of the subject, but experts in the field will also want a copy for their shelves.
In recent years, geometry has played a lesser role in undergraduate courses than it has ever done. Nevertheless, it still plays a leading role in mathematics at a higher level. Its central role in the history of mathematics has never been disputed. It is important, therefore, to introduce some geometry into university syllabuses. There are several ways of doing this, it can be incorporated into existing courses that are primarily devoted to other topics, it can be taught at a first year level or it can be taught in higher level courses devoted to differential geometry or to more classical topics. These notes are intended to fill a rather obvious gap in the literature. It treats the classical topics of Euclidean, projective and hyperbolic geometry but uses the material commonly taught to undergraduates: linear algebra, group theory, metric spaces and complex analysis. The notes are based on a course whose aim was two fold, firstly, to introduce the students to some geometry and secondly to deepen their understanding of topics that they have already met. What is required from the earlier material is a familiarity with the main ideas, specific topics that are used are usually redone.
"The book is highly recommended as a text for an introductory course in nonlinear analysis and bifurcation theory... reading is fluid and very pleasant... style is informal but far from being imprecise." -review of the first edition. New to this edition: additional applications of the theory and techniques, as well as several new proofs. This book is ideal for self-study for mathematicians and students interested in geometric and algebraic topology, functional analysis, differential equations, and applied mathematics.
This book contains the proceedings of the conference "Fractals in Graz 2001 - Analysis, Dynamics, Geometry, Stochastics" that was held in the second week of June 2001 at Graz University of Technology, in the capital of Styria, southeastern province of Austria. The scientific committee of the meeting consisted of M. Barlow (Vancouver), R. Strichartz (Ithaca), P. Grabner and W. Woess (both Graz), the latter two being the local organizers and editors of this volume. We made an effort to unite in the conference as well as in the present pro ceedings a multitude of different directions of active current work, and to bring together researchers from various countries as well as research fields that all are linked in some way with the modern theory of fractal structures. Although (or because) in Graz there is only a very small group working on fractal structures, consisting of "non-insiders," we hope to have been successful with this program of wide horizons. All papers were written upon explicit invitation by the editors, and we are happy to be able to present this representative panorama of recent work on poten tial theory, random walks, spectral theory, fractal groups, dynamic systems, fractal geometry, and more. The papers presented here underwent a refereeing process."
This is a softcover reprint of the English translation of 1987 of the second edition of Bourbaki's Espaces Vectoriels Topologiques (1981).This [second edition] is a brand new book and completely supersedes the original version of nearly 30 years ago. But a lot of the material has been rearranged, rewritten, or replaced by a more up-to-date exposition, and a good deal of new material has been incorporated in this book, all reflecting the progress made in the field during the last three decades.Table of Contents.Chapter I: Topological vector spaces over a valued field.Chapter II: Convex sets and locally convex spaces.Chapter III: Spaces of continuous linear mappings.Chapter IV: Duality in topological vector spaces.Chapter V: Hilbert spaces (elementary theory).
In recent years hyperbolic geometry has been the object and the preparation for extensive study that has produced important and often amazing results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it reaches recent developments of the theory, the book is mainly addressed to graduate-level students approaching research, but it will also be a helpful and ready-to-use tool to the mature researcher. After collecting some classical material about the geometry of the hyperbolic space and the Teichmuller space, the book centers on the two fundamental results: Mostow's rigidity theorem (of which a complete proof is given following Gromov and Thurston) and Margulis' lemma. These results form the basis for the study of the space of the hyperbolic manifolds in all dimensions (Chabauty and geometric topology); a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory. A large part is devoted to the three-dimensional case: a complete and elementary proof of the hyperbolic surgery theorem is given based on the possibility of representing three manifolds as glued ideal tetrahedra. The last chapter deals with some related ideas and generalizations (bounded cohomology, flat fiber bundles, amenable groups). This is the first book to collect this material together from numerous scattered sources to give a detailed presentation at a unified level accessible to novice readers."
The book provides an introduction to stratification theory leading the reader up to modern research topics in the field. The first part presents the basics of stratification theory, in particular the Whitney conditions and Mather's control theory, and introduces the notion of a smooth structure. Moreover, it explains how one can use smooth structures to transfer differential geometric and analytic methods from the arena of manifolds to stratified spaces. In the second part the methods established in the first part are applied to particular classes of stratified spaces like for example orbit spaces. Then a new de Rham theory for stratified spaces is established and finally the Hochschild (co)homology theory of smooth functions on certain classes of stratified spaces is studied. The book should be accessible to readers acquainted with the basics of topology, analysis and differential geometry.
Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichm ller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed account of newer topics, including Szemer\'edi's Regularity Lemma and its use, Shelah's extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. In no other branch of mathematics is it as vital to tackle and solve challenging exercises in order to master the subject. To this end, the book contains an unusually large number of well thought-out exercises: over 600 in total. Although some are straightforward, most of them are substantial, and others will stretch even the most able reader.
This book describes work, largely that of the author, on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces. This book is essential reading for anyone interested in low-dimensional topology.
The geometric and algebraic aspects of two-dimensional homotopy theory are both important areas of current research. Basic work on two-dimensional homotopy theory dates back to Reidemeister and Whitehead. The contributors to this book consider the current state of research beginning with introductory chapters on low-dimensional topology and covering crossmodules, Peiffer-Reid identities, and concretely discussing P2 theory. The chapters have been skillfully woven together to form a coherent picture, and the geometric nature of the subject is illustrated by over 100 diagrams. The final chapters round off neatly with a look at the present status of the conjectures of Zeeman, Whitehead and Andrews-Curtis.
The aim of these notes is to link algorithmic problems arising in knot theory with statistical physics and classical combinatorics. Apart from the theory of computational complexity needed to deal with enumeration problems, introductions are given to several of the topics, such as combinatorial knot theory, randomized approximation models, percolation, and random cluster models.
In the large and thriving field of compact transformation groups an important role has long been played by cohomological methods. This book aims to give a contemporary account of such methods, in particular the applications of ordinary cohomology theory and rational homotopy theory with principal emphasis on actions of tori and elementary abelian p-groups on finite-dimensional spaces. For example, spectral sequences are not used in Chapter 1, where the approach is by means of cochain complexes; and much of the basic theory of cochain complexes needed for this chapter is outlined in an appendix. For simplicity, emphasis is put on G-CW-complexes; the refinements needed to treat more general finite-dimensional (or finitistic) G-spaces are often discussed separately. Subsequent chapters give systematic treatments of the Localization Theorem, applications of rational homotopy theory, equivariant Tate cohomology and actions on Poincaré duality spaces. Many shorter and more specialized topics are included also. Chapter 2 contains a summary of the main definitions and results from Sullivan's version of rational homotopy theory which are used in the book.
This book is mainly devoted to the combinatorics of quadratic holomorphic dynamics. The conceptual kernel is a self-contained abstract counterpart of connected quadratic Julia sets which is built on Thurston's concept of a quadratic invariant lamination and on symbolic descriptions of the angle-doubling map. The theory obtained is illustrated in the complex plane. It is used to give rigorous proofs of some well-known and some partially new statements on the structure of the Mandelbrot set. The text is intended for graduate students and researchers. Some elementary knowledge in topology and in functions of one complex variable is assumed. |
You may like...
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, …
Hardcover
R1,162
Discovery Miles 11 620
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,400
Discovery Miles 24 000
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,143
Discovery Miles 21 430
|