![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
Our motivation for gathering the material for this book over aperiod of seven years has been to unify and simplify ideas wh ich appeared in a sizable number of re search articles during the past two decades. More specifically, it has been our aim to provide the categorical foundations for extensive work that was published on the epimorphism- and cowellpoweredness problem, predominantly for categories of topological spaces. In doing so we found the categorical not ion of closure operators interesting enough to be studied for its own sake, as it unifies and describes other significant mathematical notions and since it leads to a never-ending stream of ex amples and applications in all areas of mathematics. These are somewhat arbitrarily restricted to topology, algebra and (a small part of) discrete mathematics in this book, although other areas, such as functional analysis, would provide an equally rich and interesting supply of examples. We also had to restrict the themes in our theoretical exposition. In spite of the fact that closure operators generalize the uni versal closure operations of abelian category theory and of topos- and sheaf theory, we chose to mention these aspects only en passant, in favour of the presentation of new results more closely related to our original intentions. We also needed to refrain from studying topological concepts, such as compactness, in the setting of an arbitrary closure-equipped category, although this topic appears prominently in the published literature involving closure operators."
In this book a general topological construction of extension is proposed for problems of attainability in topological spaces under perturbation of a system of constraints. This construction is realized in a special class of generalized elements defined as finitely additive measures. A version of the method of programmed iterations is constructed. This version realizes multi-valued control quasistrategies, which guarantees the solution of the control problem that consists in guidance to a given set under observation of phase constraints. Audience: The book will be of interest to researchers, and graduate students in the field of optimal control, mathematical systems theory, measure and integration, functional analysis, and general topology.
In this monograph, questions of extensions and relaxations are consid ered. These questions arise in many applied problems in connection with the operation of perturbations. In some cases, the operation of "small" per turbations generates "small" deviations of basis indexes; a corresponding stability takes place. In other cases, small perturbations generate spas modic change of a result and of solutions defining this result. These cases correspond to unstable problems. The effect of an unstability can arise in extremal problems or in other related problems. In this connection, we note the known problem of constructing the attainability domain in con trol theory. Of course, extremal problems and those of attainability (in abstract control theory) are connected. We exploit this connection here (see Chapter 5). However, basic attention is paid to the problem of the attainability of elements of a topological space under vanishing perturba tions of restrictions. The stability property is frequently missing; the world of unstable problems is of interest for us. We construct regularizing proce dures. However, in many cases, it is possible to establish a certain property similar to partial stability. We call this property asymptotic nonsensitivity or roughness under the perturbation of some restrictions. The given prop erty means the following: in the corresponding problem, it is the same if constraints are weakened in some "directions" or not. On this basis, it is possible to construct a certain classification of constraints, selecting "di rections of roughness" and "precision directions.""
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.
A. Banyaga: On the group of diffeomorphisms preserving an exact symplectic.- G.A. Fredricks: Some remarks on Cauchy-Riemann structures.- A. Haefliger: Differentiable Cohomology.- J.N. Mather: On the homology of Haefliger 's classifying space.- P. Michor: Manifolds of differentiable maps.- V. Poenaru: Some remarks on low-dimensional topology and immersion theory.- F. Sergeraert: La classe de cobordisme des feuilletages de Reeb de S est nulle.- G. Wallet: Invariant de Godbillon-Vey et diff omorphismes commutants.
Helmholtz's seminal paper on vortex motion (1858) marks the beginning of what is now called topological fluid mechanics.After 150 years of work, the field has grown considerably. In the last several decades unexpected developments have given topological fluid mechanics new impetus, benefiting from the impressive progress in knot theory and geometric topology on the one hand, and in mathematical and computational fluid dynamics on the other. This volume contains a wide-ranging collection of up-to-date, valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics, including topological vortex dynamics and magnetohydrodynamics, integrability issues, Hamiltonian structures and singularity formation, to DNA tangles and knotted DNAs in sedimentation. A substantial introductory chapter on knots and links, covering elements of modern braid theory and knot polynomials, as well as more advanced topics in knot classification, provides an invaluable addition to this material.
This volume covers the proceedings of an international conference held in Oxford in June 2002. In addition to articles arising from the conference, the book also contains the famous as yet unpublished article by Graeme Segal on the Definition of Conformal Field Theories. It is ideal as a view of the current state of the art and will appeal to established researchers as well as to novice graduate students.
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.
Since the early part of the 20th century, topology has gradually spread to many other branches of mathematics, and this book demonstrates how the subject continues to play a central role in the field. Written by a world-renowned mathematician, this classic text traces the history of algebraic topology beginning with its creation in the early 1900s and describes in detail the important theories that were discovered before 1960. Through the work of Poincare, de Rham, Cartan, Hureqicz, and many others, this historical book also focuses on the emergence of new ideas and methods that have led 21st-century mathematicians towards new research directions. This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincare and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it (MathSciNet) The author] traces the development of algebraic and differential topology from the innovative work by Poincare at the turn of the century to the period around 1960. He] has given a superb account of the growth of these fields. The details are interwoven with the narrative in a very pleasant fashion. The author] has previous written histories of functional analysis and of algebraic geometry, but neither book was on such a grand scale as this one. He has made it possible to trace the important steps in the growth of algebraic and differential topology, and to admire the hard work and major advances made by the founders. (Zentralblatt MATH)
Arising from a summer school course taught by János Kollár, this book develops the modern theory of rational varieties at a level appropriate for graduate study. Kollár's original course has been developed, with his co-authors, into a state-of-the-art treatment of the classification of algebraic varieties. The authors have included numerous exercises with solutions, which help students reach the stage where they can begin to tackle related contemporary research problems.
This 2003 book describes a striking connection between topology and algebra, namely that 2D topological quantum field theories are equivalent to commutative Frobenius algebras. The precise formulation of the theorem and its proof is given in terms of monoidal categories, and the main purpose of the book is to develop these concepts from an elementary level, and more generally serve as an introduction to categorical viewpoints in mathematics. Rather than just proving the theorem, it is shown how the result fits into a more general pattern concerning universal monoidal categories for algebraic structures. Throughout, the emphasis is on the interplay between algebra and topology, with graphical interpretation of algebraic operations, and topological structures described algebraically in terms of generators and relations. The book will prove valuable to students or researchers entering this field who will learn a host of modern techniques that will prove useful for future work.
This book describes a striking connection between topology and algebra, namely that 2D topological quantum field theories are equivalent to Frobenius algebras. The precise formulation of the theorem and its proof is given in terms of monoidal categories, and the main purpose of the book is to develop these concepts from an elementary level, and more generally serve as an introduction to categorical viewpoints in mathematics. Rather than just proving the theorem, it is shown how the result fits into a more general pattern concerning universal monoidal categories for algebraic structures. Throughout, the emphasis is on the interplay between algebra and topology, with graphical interpretation of algebraic operations, and topological structures described algebraically in terms of generators and relations. The book will prove valuable to students or researchers entering this field who will learn a host of modern techniques that will prove useful for future work.
Based on courses held at the Feza GÜrsey Institute, this collection of survey articles introduces advanced graduate students to an exciting area on the border of mathematics and mathematical physics. Including articles by key names such as Calogero, Donagi and Mason, it features the algebro-geometric material from Donagi as well as the twistor space methods in Woodhouse's contribution, forming a bridge between the pure mathematics and the more physical approaches.
Incorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, its influence is not confined there; for example, the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. Researchers and graduate students working in areas ranging from Donaldson or Seiberg-Witten invariants to more concrete problems such as vector bundles on curves will find this to be a valuable resource. Among other things this volume includes an improved presentation of the classical foundations of invariant theory that, in addition to geometers, would be useful to those studying representation theory. This translation gives an accurate account of Mukai's influential Japanese texts.
Information content and programming semantics are just two of the applications of the mathematical concepts of order, continuity and domains. This authoritative and comprehensive account of the subject will be an essential handbook for all those working in the area. An extensive index and bibliography make this an ideal sourcebook for all those working in domain theory.
Celebrating a century of geometry and geometry teaching, this volume includes popular articles on Pythagoras, the golden ratio and recreational geometry. Thirty "Desert Island Theorems" from distinguished mathematicians and educators disclose surprising results. (Contributors include a Nobel Laureate and a Pulitzer Prize winner.) Co-published with The Mathematical Association of America.
Abstract regular polytopes stand at the end of more than two millennia of geometrical research, which began with regular polygons and polyhedra. The rapid development of the subject in the past twenty years has resulted in a rich new theory featuring an attractive interplay of mathematical areas, including geometry, combinatorics, group theory and topology. This is the first comprehensive, up-to-date account of the subject and its ramifications. It meets a critical need for such a text, because no book has been published in this area since Coxeter's "Regular Polytopes" (1948) and "Regular Complex Polytopes" (1974).
Complex Polynomials explores the geometric theory of polynomials and rational functions in the plane. Early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology, and analysis. Throughout the book, the author introduces a variety of ideas and constructs theories around them, incorporating much of the classical theory of polynomials as he proceeds. These ideas are used to study a number of unsolved problems. Several solutions to problems are given, including a comprehensive account of the geometric convolution theory.
For those working in singularity theory or other areas of complex geometry, this volume will open the door to the study of Frobenius manifolds. In the first part Hertling explains the theory of manifolds with a multiplication on the tangent bundle. He then presents a simplified explanation of the role of Frobenius manifolds in singularity theory along with all the necessary tools and several applications. Readers will benefit from this careful and sound study of the fundamental structures and results in this exciting branch of mathematics.
Praise for George Francis's A Topological Picturebook: Bravo to Springer for reissuing this unique and beautiful book! It not only reminds the older generation of the pleasures of doing mathematics by hand, but also shows the new generation what hands on'' really means. - John Stillwell, University of San Francisco The Topological Picturebook has taught a whole generation of mathematicians to draw, to see, and to think. - Tony Robbin, artist and author of Shadows of Reality: The Fourth Dimension in Relativity, Cubism, and Modern Thought The classic reference for how to present topological information visually, full of amazing hand-drawn pictures of complicated surfaces. - John Sullivan, Technische Universitat Berlin A Topological Picturebook lets students see topology as the original discoverers conceived it: concrete and visual, free of the formalism that burdens conventional textbooks. - Jeffrey Weeks, author of The Shape of Space A Topological Picturebook is a visual feast for anyone concerned with mathematical images. Francis provides exquisite examples to build one's "visualization muscles." At the same time, he explains the underlying principles and design techniques for readers to create their own lucid drawings. - George W. Hart, Stony Brook University In this collection of narrative gems and intriguing hand-drawn pictures, George Francis demonstrates the chicken-and-egg relationship, in mathematics, of image and text. Since the book was first published, the case for pictures in mathematics has been won, and now it is time to reflect on their meaning. A Topological Picturebook remains indispensable. - Marjorie Senechal, Smith College andco-editor of the Mathematical Intelligencer
If mathematics is a language, then taking a topology course at the undergraduate level is cramming vocabulary and memorizing irregular verbs: a necessary, but not always exciting exercise one has to go through before one can read great works of literature in the original language.The present book grew out of notes for an introductory topology course at the University of Alberta. It provides a concise introduction to set theoretic topology (and to a tiny little bit of algebraic topology). It is accessible to undergraduates from the second year on, but even beginning graduate students canbenefit from some parts.Great care has been devoted to the selection of examples that are not self-serving, but already accessible for students who have a background in calculus and elementary algebra, but not necessarily in real or complex analysis.In some points, the book treats its material differently than other texts on the subject:
This work presents a general theory as well as constructive methodology in order to solve "observation problems," namely, those problems that pertain to reconstructing the full information about a dynamical process on the basis of partial observed data. A general methodology to control processes on the basis of the observations is also developed. Illustrative but practical applications in the chemical and petroleum industries are shown.
Here is a genuine introduction to the differential geometry of plane curves for undergraduates in mathematics, or postgraduates and researchers in the engineering and physical sciences. This well-illustrated text contains several hundred worked examples and exercises, making it suitable for adoption as a course text. Key concepts are illustrated by named curves, of historical and scientific significance, leading to the central idea of curvature. The author introduces the core material of classical kinematics, developing the geometry of trajectories via the ideas of roulettes and centrodes, and culminating in the inflexion circle and cubic of stationary curvature. |
You may like...
Topological Groups - Yesterday, Today…
Sidney A. Morris
Hardcover
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, …
Hardcover
R1,162
Discovery Miles 11 620
|